Skip to main content

Role of Taurine on the Actions of Alcohol Against Systemic and Cardiac Biochemical Changes in the Diabetic Rat

  • Conference paper
Book cover Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

The purpose of this study was to determine in the diabetic rat if light alcohol (EtOH) intake and taurine (TAU) can protect the heart against oxidative stress, inflammation and energy imbalance, and if a concurrent treatment is more effective than monotherapy. The experiments were conducted with male Sprague-Dawley rats, 310–340 g, n = 6, made diabetic on day 15 with a 60 mg/kg intraperitoneal dose of streptozotocin. A 5 % EtOH (v/v) solution was available freely, in place of drinking water, from days 1 to 28. TAU, 2.4 mM/kg/day, was given orally, by itself or alongside EtOH. Animals were sacrificed on day 29 to collect blood and heart samples. Plasma samples were analyzed for glucose, insulin, fatty acids, and indices of dyslipidemia, heart damage and oxidative stress. Heart homogenates were used to assess oxidative stress, changes in ATP/ADP ratios, and concentrations of proinflammatory cytokines. Results from diabetic rats were consistent with the occurrence of hyperglycemia, hypoinsulinemia, dyslipidemia, cardiac injury, increased lipolysis, oxidative stress, inflammation and mitochondrial dysfunction. Without exceptions, a preconditioning with either EtOH or TAU led to a significant attenuation of the alterations subsequently caused by diabetes, with TAU generally providing a somewhat greater effect than EtOH. Furthermore, a combined treatment with these two agents enhanced the individual protective effects to varying extents. The present results strongly suggest that both EtOH and TAU can effectively limit diabetes metabolic and oxidative alterations associated with the heart, especially when in the presence of each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EtOH:

Ethanol

TAU:

Taurine

STZ:

Streptozotocin

AST:

Aspartate transaminase

CK:

Creatine kinase

LDH:

Lactate dehydrogenase

FA:

Fatty acid

MDA:

Malondialdehyde

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

CAT:

Catalase

GPx:

Glutathione peroxidase

SOD:

Superoxide dismutase

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor-α

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

References

  • Abel ED (2005) Metabolic perturbations in the diabetic heart: mechanisms of molecular target. Drug Discov Today Dis Med 2:115–122

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  • Ansley DM, Wang B (2013) Oxidative stress and myocardial injury in the diabetic rat. J Pathol 229:232–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1998) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    Google Scholar 

  • Badawy AAB (1977) A review of the effect of alcohol on carbohydrate metabolism. Br J Alcohol Alcohol 12:30–42

    CAS  Google Scholar 

  • Battiprolu PK, Gillette TG, Wang ZV, Lavandero S, Hill JA (2010) Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech 7:e135–e147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belke DD, Larsen TS, Gibbs EM, Severson DL (2002) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    Google Scholar 

  • Bergmeyer HU, Scheibe P, Wahlefeld AW (1978) Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem 24:58–73

    CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications. A unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Buhl SN, Jackson KY (1978) Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate reactions in human serum at 25, 30, and 37 °C. Clin Chem 24:828–831

    CAS  PubMed  Google Scholar 

  • Chang KJ, Kwon W (2000) Immunohistochemical localization of insulin in pancreatic beta-cells of taurine-supplemented or taurine-depleted diabetic rats. Adv Exp Med Biol 483:579–587

    Article  CAS  PubMed  Google Scholar 

  • Chao P, Hsu C, Yin M (2009) Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab 6:33

    Article  Google Scholar 

  • Chen Y, Davis-Gorman G, Watson RR, McDonagh PF (2003) Chronic ethanol consumption modulates myocardial ischaemia-reperfusion injury in murine AIDS. Alcohol Alcohol 38:18–24

    Article  PubMed  Google Scholar 

  • Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ (2009) Alcohol in moderation, cardioprotection and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 33:206–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drimal J, Knezi V, Navarova J, Nedelcevova J, Paulovicova E, Sotnikova R, Snirc V, Drimal D (2008) Role of inflammatory cytokines and chemoattractants in the rat model of streptozotocin-induced diabetic heart failure. Endocr Regul 42:129–135

    CAS  PubMed  Google Scholar 

  • Fan LH, He L, Cao ZQ, Xiang B, Liu L (2012) Effect of ischemia preconditioning on renal ischemia/reperfusion injury in rats. Int Braz J Urol 38:842–854

    Article  PubMed  Google Scholar 

  • Feinman L, Lieber CS (1999) Ethanol and lipid metabolism. Am J Clin Nutr 70:791–792

    CAS  PubMed  Google Scholar 

  • Fernández-Checa JC, Kaplowitz N (2005) Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 204:263–273

    Article  PubMed  Google Scholar 

  • Fredrickson DS, Levy RI, Lees RS (1987) Fat transport in lipoproteins: an integrated approach to medicine and disorders. N Engl J Med 276:34–42

    Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Güntherberg H, Rost J (1966) The true oxidized glutathione content of red blood cells obtained by new enzymic and paper chromatographic methods. Anal Biochem 15:205–210

    Article  PubMed  Google Scholar 

  • Günzler WA, Flohé L (1985) Glutathione peroxidase. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, FL, pp 285–290

    Google Scholar 

  • Haber CA, Lam TK, Yu Z, Gupta N, Oh T, Bogdanovic E, Giacca A, Fantus IG (2003) N-acetylcysteine (NAC) and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH, Andersen ML, Grunnet N (2010) A role for taurine in mitochondrial function. J Biomed Sci 17(Suppl 1):S23

    Article  PubMed Central  PubMed  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for the determination of oxidized and reduced glutathione in tissue. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Schaffer SW (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain SK, Rains J, Croad J (2007) Chromium-niacinate (Cr-N) supplementation (suppl) lowers proinflammatory cytokines and lipid peroxidation (LP) in cultured human monocytes exposed to high-glucose (HG) and in streptozotocin (STZ)-treated diabetic rats (D). Diabetes 56(Suppl 1):pA450

    Google Scholar 

  • Jang JS, Piao S, Cha YN, Kim C (2009) Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr 45:37–43

    Article  CAS  Google Scholar 

  • Jong CJ, Azuma J, Schaffer SW (2011) Role of mitochondrial permeability transition in taurine deficiency-induced apoptosis. Exp Clin Cardiol 16:125–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhlmann MK, Betz R, Hanselmann R, Köhler H (1997) Heat-preconditioning confers protection from Ca2+-mediated cell toxicity in renal tubular epithelial cells (BSC-1). Cell Stress Chaperones 2:175–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankaer V (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 5:213–219

    Article  PubMed Central  PubMed  Google Scholar 

  • Lihn L, Pedersen SB, Richelsen B (2005) Adinopectin: action, regulation and association to insulin sensitivity. Obes Rev 6:13–21

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Yang J, Wu G, Liu M, Ly Q, Yang Q, Hu J (2013) Inhibitory effects of taurine on STZ-induced apoptosis of pancreatic islet cells. Adv Exp Med Biol 775:287–297

    Article  CAS  PubMed  Google Scholar 

  • Lindros KO, Stowell A (1982) Effects of ethanol-derived acetaldehyde on the phosphorylation potential and on the intramitochondrial redox state in intact rat liver. Arch Biochem Biophys 218:429–437

    Article  CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar P, Catalano D, Szabo G (1997) Alcohol-induced regulation of nuclear regulatory factor-κB in human monocytes. Alcohol Clin Exp Res 21:988–994

    CAS  PubMed  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  • Militante JD, Lombardini JB, Schaffer SW (2000) The role of taurine in the pathogenesis of the cardiomyopathy of insulin-dependent diabetes mellitus. Cardiovasc Res 46:393–402

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Miyamae M, Diamond I, Weiner MW, Camacho SA, Figueredo VM (1997) Regular alcohol consumption mimics cardiac preconditioning by protecting against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 94:325–3239

    Article  Google Scholar 

  • Miyamae M, Kaneda K, Domae N, Fiqueredo VM (2010) Cardioprotection by regular ethanol consumption: mechanisms and clinical application. Curr Drug Abuse Rev 3:39–48

    Article  CAS  PubMed  Google Scholar 

  • Moss DW, Henderson AR, Kachmar JF (1986) Enzymes. In: Tietz NW (ed) Textbook of clinical chemistry. W.B. Saunders Co., Philadelphia, PA, pp 698–700

    Google Scholar 

  • Nogueira LC, Couri S, Trugo NF, Lollo PCB (2014) The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans. Food Chem 158:527–533

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T (1993) Reactivity of taurine with aldehydes and its physiological role. Chem Pharm Bull 41:2172–2173

    Article  CAS  PubMed  Google Scholar 

  • Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C et al (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937

    Article  CAS  PubMed  Google Scholar 

  • Pandya KG, Patel MR, Lau-Cam CA (2010) Comparative study of the binding characteristics to and inhibitory potencies towards PARP and in vivo antidiabetogenic potencies of taurine, 3-aminobenzamide and nicotinamide. J Biomed Sci 17(Suppl 1):S16

    Article  PubMed Central  PubMed  Google Scholar 

  • Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387

    Article  CAS  PubMed  Google Scholar 

  • Pösö AR, Forsander OA (1976) Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats. Acta Chem Scand B 30:801–806

    Article  PubMed  Google Scholar 

  • Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Raabo E, Terkildsen TC (1960) On the enzymatic determination of blood glucose. Scand J Clin Lab Invest 12:402–407

    Article  CAS  PubMed  Google Scholar 

  • Roysommuti S, Azuma J, Takahashi K, Schaffer S (2003) Taurine cytoprotection: from cell to system. J Physiol Sci 16:17–27

    Google Scholar 

  • Ruberg FL (2007) Myocardial lipid accumulation in the diabetic heart. Circulation 116:110–1112

    Article  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46:21–30

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis GB, Park E (2004) Taurine and its chloramines: modulators of immunity. Neurochem Res 29:117–126

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr et al (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E896–E905

    Article  CAS  PubMed  Google Scholar 

  • Sierksma A, Gaag MS, van Tol A, James RW, Hendriks HF (2002) Kinetics of HDL cholesterol and paraoxonase activity in moderate alcohol consumers. Alcohol Clin Exp Res 26:1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Szabo G, Madrekar P, Oak S, Mayerle J (2007) Effect of ethanol on inflammatory responses. Pancreatology 7:115–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szasz G, Gruber N, Bernt E (1976) Creatine kinase in serum: 1. Determination of optimum reactions conditions. Clin Chem 22:650–656

    CAS  Google Scholar 

  • Tadolini B, Pintus G, Pinna GG, Bennardini F, Franconi F (1995) Effects of taurine and hypotaurine on lipid peroxidation. Biochem Biophys Res Commun 213:820–826

    Article  CAS  PubMed  Google Scholar 

  • Tappia PS, Thliveris J, Dhalla NS (2011) Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. Exp Clin Cardiol 16:e17–e22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vasdev S, Gill V, Singal PK (2006) Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms. Vasc Health Risk Manag 2:263–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Sun AY, Simonyi A (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADP oxidase-derived ROS. Free Radic Biol Med 43:10461060

    Google Scholar 

  • Wang WN, Li W, Lu X, Zhao X, Xu L (2013) Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croat Med J 54:171–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148:209–214

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Parikh, M.C., Patel, S.N., Shen, Y., Lau-Cam, C.A. (2015). Role of Taurine on the Actions of Alcohol Against Systemic and Cardiac Biochemical Changes in the Diabetic Rat. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_25

Download citation

Publish with us

Policies and ethics