Skip to main content

Impact of Light Ethanol Intake and of Taurine, Separately and Together, on Pathways of Glucose Metabolism in the Kidney of Diabetic Rats

  • Conference paper
Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

This study has comparatively evaluated ethanol and taurine for their effects on diabetes-induced changes in the activities of enzymes related to the classical and alternative pathways of glucose metabolism, both separately and in combination with each other, in the rat. The experiments were carried out using male Sprague-Dawley rats, 310–340 g in weight, assigned to groups of six. Ethanol, as a 5 % (v/v) solution, was freely available from days 1 to 28 in place of the drinking water. Diabetes was induced on day 15 with streptozotocin, 60 mg/kg i.p. in 10 mM citrate buffer pH 4.5. Taurine, 2.4 mM/kg, was given by oral gavage alongside ethanol. Kidneys were collected on day 29 and made into homogenates in PBS pH 7.4, which were used to assay enzymes related to glycolysis (HK, GK-like, PFK-1, PK, GAPDH), gluconeogenesis (PC, cPEPCK, FBPase, G6Pase), Krebs cycle (CS), malate shuttle (cMDH), pentose phosphate pathway (G6PDH, 6PGDH) and polyol pathway (AR, SDH) as well as the glucose and glycogen contents. Diabetes increased the enzyme activities of glycolysis (≥55 %), gluconeogenesis (≥162 %), malate shuttle (>125 %), pentose phosphate pathway (>200 %), AR (~110 %) and glycogenesis (~235 %), lowered the activity of the Krebs cycle (by 73 %), and increased the glycogen/glucose ratio (~300 %). The daily consumption of a low concentration of ethanol or an oral dosing with taurine generally resulted in a significant protection against the changes in the activities of metabolic pathways associated with glucose metabolism when given before the induction of diabetes, being about equipotent in their effects, their individual protective effects became enhanced when available concurrently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

STZ:

Streptozotocin

TAU:

Taurine

EtOH:

Ethanol

HK:

Hexokinase

GKL:

Glucokinase-like

PFK-1:

Phosphofructokinase-1

PK:

Pyruvate kinase

GAPDH:

Glyceraldehydes-3-phosphate dehydrogenase

PC:

Pyruvate carboxylase

cPEPCK:

Cytosolic phosphoenolpyruvate carboxykinase

FBPase:

Fructose-1,-6-bisphosphatase

G6Pase:

Glucose 6-phosphatase

TCA:

Tricarboxylic acid cycle

CS:

Citrate synthase

cMDH:

Cytosolic malate dehydrogenase

G6PDH:

Glucose 6-phosphate dehydrogenase

6PGDH:

6-Phosphogluconate dehydrogenase

AR:

Aldose reductase

SDH:

Sorbitol dehydrogenase

References

  • Anderson JW (1974) Glucose metabolism in jejunal mucosa of fed, fasted, and STZ-diabetic rats. Am J Physiol 226:226–229

    CAS  PubMed  Google Scholar 

  • Anderson JW, Stowring L (1973) Glycolytic and gluconeogenic enzyme activities in renal cortex of diabetic rats. Am J Physiol 224:930–936

    CAS  PubMed  Google Scholar 

  • Badawy AAB (1977) A review of the effects of alcohol on carbohydrate metabolism. Alcohol Alcohol 12:120–136

    CAS  Google Scholar 

  • Badawy AAB, Evans M (1974) Alcohol and tryptophan metabolism. J Alcohol 9:97–116

    Google Scholar 

  • Batista TM, Ribeiro RA, Amaral AG, de Oliveira CA, Boschero AC, Carneiro EM (2012) Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: involvement of Ach-M3R, Synt 1 and SNAP-25 proteins. J Nutr Biochem 23:306–312

    CAS  PubMed  Google Scholar 

  • Beisswenger PJ, Howell SK, Smith K, Szwergold BS (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637:98–106

    CAS  PubMed  Google Scholar 

  • Belfiore F, Rabuazzo AM, Napoli E, Borzi V, Lo Vecchio L (1975) Enzymes of glucose metabolism and of the citrate cleavage pathway in adipose tissue of normal and diabetic subjects. Diabetes 24:865–873

    CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1983a) Malate dehydrogenase. In: Bergmeyer HU, Grassl M (eds) Methods of enzymatic analysis, vol II, 3rd edn. Verlag Chemie, Deerfield Beach, FL, pp 246–247

    Google Scholar 

  • Bergmeyer HU (1983b) Glucose 6-phosphate dehydrogenase. In: Bergmeyer HU, Grassl M (eds) Methods of enzymatic analysis, vol II, 3rd edn. Verlag Chemie, Deerfield Beach, FL, pp 202–203

    Google Scholar 

  • Bergmeyer HU (1983c) 6-Phosphogluconate dehydrogenase. In: Bergmeyer HU, Grassl M (eds) Methods of enzymatic analysis, vol II, 3rd edn. Verlag Chemie, Deerfield Beach, FL, pp 278–279

    Google Scholar 

  • Bergmeyer HU (1983d) Sorbitol dehydrogenase. In: Bergmeyer HU, Grassl M (eds) Methods of enzymatic analysis, vol II, 3rd edn. Verlag Chemie, Deerfield Beach, FL, pp 309–310

    Google Scholar 

  • Bonadonna RC (2004) Alterations of glucose metabolism in type 2 diabetes mellitus. An overview. Rev Endocr Metab Disord 5:89–97

    CAS  PubMed  Google Scholar 

  • Boquist L, Ericsson I, Lorentzon R, Nelson L (1985) Alterations in mitochondrial aconitase activity and respiration, and in concentration of citrate in some organs of mice with experimental or genetic diabetes. FEBS Lett 183:173–176

    CAS  PubMed  Google Scholar 

  • Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247

    PubMed  Google Scholar 

  • Cade WT (2008) Diabetes-related microvascular and macrovascular diseases. Phys Ther 88:1322–1335

    PubMed Central  PubMed  Google Scholar 

  • Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Olivers MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511

    CAS  PubMed  Google Scholar 

  • Chang HC, Lane MD (1966) The enzymatic carboxylation of phosphoenolpyruvate II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem 241:2413–2420

    CAS  PubMed  Google Scholar 

  • Chang KC, Paek KS, Kim HJ, Lee YS, Yabe-Nishimura C, Seo HG (2002) Substrate-induced up-regulation of aldose reductase by methylglyoxal, a reactive oxoaldehyde elevated in diabetes. Mol Pharmacol 61:1184–1191

    CAS  PubMed  Google Scholar 

  • Chauncey KB, Tenner TE, Lombardini JB, Jones BG, Brooks ML, Warner RD, Davis RL, Ragain RM (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–96

    CAS  PubMed  Google Scholar 

  • Clark DW, Evans RL (1960) The influence of alcohol upon carbohydrate metabolism in the liver and in isolated diaphragms. Q J Stud Alcohol 21:13–22

    Google Scholar 

  • Colivicchi MA, Raimondi L, Bianchi L, Tipton KF, Pirisino R, Della Corte L (2004) Taurine prevents streptozotocin impairment of hormone-stimulated glucose uptake in rat adipocytes. Eur J Pharmacol 495:209–215

    CAS  PubMed  Google Scholar 

  • Corder CN, Braughler JM, Culp PA (1979) Quantitative histochemistry of the sorbitol pathway in glomeruli and small arteries of human diabetic kidney. Folia Histochem Cytochem (Krakow) 17:137–145

    CAS  Google Scholar 

  • Duruibe V, Tejwani GA (1981) The effect of ethanol on the activities of the key gluconeogenic and glycolytic enzymes of rat liver. Mol Pharmacol 20:621–630

    CAS  PubMed  Google Scholar 

  • Easterday A, Keil N, Subramanian R (2007) Mechanism of inhibition of glyceraldehyde-3-phosphate dehydrogenase activity by glucose. FASEB J 21:805.7

    Google Scholar 

  • Eid A, Bodin S, Ferrier B, Delage H, Boghossian M, Martin M, Baverel G, Conjard A (2006) Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. J Am Soc Nephrol 17:398–405

    CAS  PubMed  Google Scholar 

  • Ekberg K, Landau BR, Wajngot A, Chandramuli V, Efendic D, Brunengraber H, Wahren J (1999) Contribution by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48:292–298

    CAS  PubMed  Google Scholar 

  • Elizarova EP, Nedosugova LV (1996) First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv Exp Med Biol 403:583–588

    CAS  PubMed  Google Scholar 

  • Emanuele N, Swade TF, Emanuele MA (1998) Consequences of alcohol use in diabetics. Alcohol Health Res World 22:211–219

    CAS  PubMed  Google Scholar 

  • Ersöz G, Koz M, Babül A, Gönül B (1994) The effect of taurine on blood glucose, tissue glycogen and serum C-peptide levels on glucocorticoid administered rats. Gazi Med J 1:1–5

    Google Scholar 

  • Feng L, Gao L, Guan Q, Hou X, Wan Q, Wan X, Zhao J (2008) Long-term moderate ethanol consumption restores insulin sensitivity in high-fat-fed rats by increasing SLC2A4 (GLUT 4) in the adipose tissue by AMP-activated protein kinase activation. J Endocrinol 199:95–104

    CAS  PubMed  Google Scholar 

  • Field J, Williams HE, Mortimore GE (1963) Studies on the mechanism of ethanol-induced hypoglycemia. J Clin Invest 42:497–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming T, Curry J, Naroth G, Djuric Z, Humpert PM, Zeier M, Bierhaus A, Naroth PP (2012) Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates? Diabetologia 55:1151–1155

    CAS  PubMed  Google Scholar 

  • Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26:77–82

    Google Scholar 

  • Frieden C (1959) Glutamate dehydrogenase. II. The effect of various nucleotides on the association-dissociation and kinetic properties. J Biol Chem 234:815–830

    CAS  PubMed  Google Scholar 

  • Frohman CE, Orten JM, Smith AH (1951) Levels of acids of the tricarboxylic acid cycle in tissues of normal and diabetic rats. J Biol Chem 193:803–807

    CAS  PubMed  Google Scholar 

  • Furuya DT, Binsack R, Onishi ME, Monteiro-Seraphim P, Machado UF (2005) Low ethanol consumption induces enhancement of insulin sensitivity in liver of normal rats. Life Sci 77:1813–1824

    CAS  Google Scholar 

  • Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol 17:368–377

    CAS  PubMed  Google Scholar 

  • Gerich JE, Meyer C, Woerle HJ, Stumvolt M (2001) Renal gluconeogenesis. Its importance in human glucose homeostasis. Diabetes Care 24:382–391

    CAS  PubMed  Google Scholar 

  • Gierow P, Jergil B (1980) A spectrophotometric method for the determination of glucose-6-phosphatase activity. Anal Biochem 101:305–309

    CAS  PubMed  Google Scholar 

  • Goodman HO, Shihabi ZK (1990) Supplemental taurine in diabetic rats: effects on plasma glucose and triglycerides. Biochem Med Metab Biol 43:1–9

    CAS  PubMed  Google Scholar 

  • Grant CM (2008) Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7:1. doi:10.1186/biol63

    PubMed Central  PubMed  Google Scholar 

  • Gross JL, de Acevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:176–188

    Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:106–111

    Google Scholar 

  • Hawkins RD, Kalant H (1972) The metabolism of ethanol and its metabolic effects. Pharmacol Rev 24:67–157

    CAS  PubMed  Google Scholar 

  • He RQ, Li YG, Wu XQ, Li L (1995) Inactivation and conformation changes of the glycated and non-glycated forms of D-glyceraldehyde dehydrogenase during guanidine-HCl denaturation. Biochim Biophys Acta 1253:47–56.

    PubMed  Google Scholar 

  • Hillbom ME (1970) Inhibition of sorbitol oxidation by ethanol in intact rat pretreated with triiodothyronine or propyl thiouracil. Biochem Pharmacol 19:483–486

    CAS  PubMed  Google Scholar 

  • Hillbom ME, Lindros KO (1971) Metabolic interaction of ethanol and sorbitol in relation to redox state of liver cytosol in hypo-, hyper-, and euthyroid rats. Metabolism 20:843–849

    CAS  PubMed  Google Scholar 

  • Hillbom ME, Pikkarainen PH (1970) Liver alcohol and sorbitol dehydrogenase activities in hypo- and hyperthyroid rats. Biochem Pharmacol 19:2097–2103

    CAS  PubMed  Google Scholar 

  • Holck P, Rasch R (1993) Structure and segmental localization of glycogen in the diabetic rat kidney. Diabetes 42:891–900

    CAS  PubMed  Google Scholar 

  • Hyslop PA, Hinshaw DB, Halsey WA, Schraufstatter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG (1988) Mechanism of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 263:1665–1675

    CAS  PubMed  Google Scholar 

  • Kalant H, Khanna JM, Loth J (1970) Effect of chronic intake of ethanol on pyridine nucleotide levels in rat liver and kidney. Can J Physiol Pharmacol 48:542–549

    CAS  PubMed  Google Scholar 

  • Kanwar M, Kowluru RA (2009) Role of glyceraldehydes 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes 58:227–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazmi SM, Mayanil CS, Baquer NZ (1985) Malate-aspartate shuttle enzymes in rat brain regions, liver and heart during alloxan diabetes and insulin replacement. Enzyme 34:98–106

    CAS  PubMed  Google Scholar 

  • Keppler D, Decker K (1974) Glycogen determination with amyloglycosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, Vol 3. Academic, New York, pp 1127–1131

    Google Scholar 

  • Khandelwal RL, Zinman SM, Knull HR (1979) The effect of streptozotocin-induced diabetes on glycogen metabolism in rat kidney and its relationship to the liver system. Arch Biochem Biophys 197:310–316

    CAS  PubMed  Google Scholar 

  • Kinoshita JH (1965) Pathways of glucose metabolism in the lens. Invest Ophthalmol Vis Sci 4:619–628

    CAS  Google Scholar 

  • Krebs HA, Freedland RA, Hems R, Stubbs M (1969) Inhibition of hepatic gluconeogenesis by ethanol. Biochem J 112:117–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubota M, Virkamäki A, Yki-Järvinen H (1992) Ethanol stimulates glycogenolysis in livers from fed rats. Proc Soc Exp Biol Med 201:114–118

    CAS  PubMed  Google Scholar 

  • Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838

    CAS  PubMed  Google Scholar 

  • Lampson WG, Kramer JH, Schaffer SW (1983) Potentiation of the actions of insulin by taurine. Can J Physiol Pharmacol 61:457–463

    CAS  PubMed  Google Scholar 

  • Lelevich SV (2008) Tissue-specific features of the pentose phosphate pathway in rats under acute alcoholic intoxication conditions. Eksp Klin Farmakol 71:53–55

    CAS  PubMed  Google Scholar 

  • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90:1323–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magori E, Nakamura M, Inoue A, Tanaka A, Sanaki N, Fukuda H, Mizutani H, Sako T, Kimura N, Arai T (2005) Malate dehydrogenase activities are lower in some types of peripheral leucocytes of dogs and cats with type 1 diabetes mellitus. Res Vet Sci 78:39–44

    CAS  PubMed  Google Scholar 

  • Martin JV, Nolan B, Wagner GC, Fisher H (2004) Effects of dietary caffeine and alcohol on liver carbohydrate and fat metabolism in rats. Med Sci Monit 10:BR455–BR461

    CAS  PubMed  Google Scholar 

  • Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int 79(Suppl 120):S1–S6

    Google Scholar 

  • Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760

    CAS  PubMed  Google Scholar 

  • Mitrakou A (2011) Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Res Clin Pract 93(Suppl 1):S66–S72

    CAS  PubMed  Google Scholar 

  • Mohr S, Stamlerb JS, Brüne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348:223–227

    CAS  PubMed  Google Scholar 

  • Murphy ED, Anderson JW (1972) Tissue glycolytic and gluconeogenic enzyme activities in mildly and moderately diabetic rats: influence of tolbutamide administration. Endocrinology 94:27–34

    Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58

    CAS  PubMed  Google Scholar 

  • Nannipieri M, Lanfranchi A, Santerini D, Catalano C, van de Werve G, Ferrannini E, Malone (2001) Influence of long-term diabetes on renal glycogen metabolism in the rat. Nephron 87:50–57

    CAS  PubMed  Google Scholar 

  • Nishimura N, Umeda C, Oda H, Yokogoshi H (2002) The effect of taurine on plasma cholesterol concentration in genetic type 2 diabetic GK rats. J Nutr Sci Vitaminol 48:483–490

    CAS  PubMed  Google Scholar 

  • Novotny MV, Yancey MF, Stuart R, Wielser D, Peterson RG (1994) Inhibition of glycolytic enzymes by endogenous aldehydes: a possible relation to diabetic neuropathies. Biochim Biophys Acta 1226:145–150

    CAS  PubMed  Google Scholar 

  • Obrosova IG, Stevens MJ (1999) Effect of dietary taurine supplementation on GSH and NADP(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Invest Ophthalmol Vis Sci 40:680–688

    CAS  PubMed  Google Scholar 

  • Ohnishi Y, Honda M, Ogihara T, Sakoda H, Anai M, Fujishiro M, Ono H, Shojima N, Fukushima Y, Inukai K, Katagiri H, Kikuchi M, Oka Y, Asano T (2003) Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun 303:788–794

    Google Scholar 

  • Ortenbland N, Mogensen M, Petersen I, Hølund K, Levin K, Sahin K, Beck-Nielsen N, Gaster M (2005) Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741:206–214

    Google Scholar 

  • Otton R, Mendonça JR, Curi R (2002) Diabetes causes marked changes in lymphocyte metabolism. J Endocrinol 174:55–61

    CAS  PubMed  Google Scholar 

  • Palmer AM (1999) The activity of the pentose phosphate pathway is increased in response to oxidative stress in Alzheimer’s disease. J Neural Transm 106:317–328

    CAS  PubMed  Google Scholar 

  • Pandya KG, Budhram R, Clark G, Lau-Cam CA (2013) Comparative evaluation of taurine and thiotaurine as protectant against diabetes-induced nephropathy in a rat model. Adv Exp Med Biol 775:371–394

    CAS  PubMed  Google Scholar 

  • Panneerselvam S, Govindaswamy S (2002) Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. J Nutr Biochem 13:21–28

    CAS  PubMed  Google Scholar 

  • Popov VS, Volvenkin SV, Eprintsev AT, Igamberdiev AU (1998) Glyoxylase cycle enzymes are present in liver peroxisomes of alloxan-treated rats. FEBS Lett 440:55–58

    CAS  PubMed  Google Scholar 

  • Puckett SW, Reddy WJ (1979) A decrease in the malate-aspartate shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J Mol Cell Cardiol 11:173–187

    CAS  PubMed  Google Scholar 

  • Raabo E, Terkildsen TC (1960) On the enzymatic determination of blood glucose. Scand J Clin Lab Invest 12:402–407

    CAS  PubMed  Google Scholar 

  • Ramudu SK, Korivi M, Kesireddy N, Le L-C, Cheng I-S, Kuo C-H, Kesireddy SR (2011) Nephro-protective effects of a ginger extract on cytosolic and mitochondrial enzymes against streptozotocin (STZ)-induced diabetic complications in rats. Chin J Physiol 54:79–86

    PubMed  Google Scholar 

  • Rawat AK (1968) Effects of ethanol infusion on the redox state and metabolite levels in rat liver in vivo. Eur J Biochem 6:585–592

    CAS  PubMed  Google Scholar 

  • Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379

    CAS  PubMed  Google Scholar 

  • Safer B (1975) The metabolic significance of the malate-aspartate cycle in heart. Circ Res 37(5):527–533

    CAS  PubMed  Google Scholar 

  • Shonk CE, Boxer GE (1964) Enzyme patterns in human tissues. I. Methods for the determination of glycolytic enzymes. Cancer Res 24:709–721

    CAS  PubMed  Google Scholar 

  • Siler SQ, Neese RA, Christiansen MP, Hellerstein MK (1998) The inhibition of gluconeogenesis following alcohol in humans. Am J Physiol 275(5 Pt 1):E897–E907

    CAS  PubMed  Google Scholar 

  • Sochor M, Kunjara S, Greenbaum AL, McLean P (1986) Renal hypertrophy in experimental diabetes. Effect of diabetes on the pathways of glucose metabolism: differential response in adult and immature rats. Biochem J 234:573–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sochor M, Kunjara S, McLean P (1988) The effect of aldose reductase inhibitor statil (ICI 128436) on the glucose over-utilization in kidney of diabetic rats. Biochem J 37:3349–3356

    CAS  Google Scholar 

  • Srere PA (1959) The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem 234:2544–2547

    CAS  PubMed  Google Scholar 

  • Steer KA, Sochor M, McLean P (1985) Renal hypertrophy in experimental diabetes. Changes in pentose phosphate pathway activity. Diabetes 34:485–490

    CAS  PubMed  Google Scholar 

  • Stumvoll M, Meyer C, Mirakou A, Nadkarni V, Gerich JE (1997) Renal glucose production and utilization: new aspects in humans. Diabetologia 40:749–757

    CAS  PubMed  Google Scholar 

  • Taketa K, Pogell BM (1965) Allosteric inhibition of rat liver fructose 1, 6-diphosphatase by adenosine 5′-monophosphate. J Biol Chem 240:651–662

    CAS  PubMed  Google Scholar 

  • Tappia PS, Xu Y-J, Rodriguez-Leyva D, Aroutiounova N, Dhalla NS (2013) Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol Res 62:171–178

    CAS  PubMed  Google Scholar 

  • Tarnow L, Rossing P, Nielsen FS, Fagerudd JA, Poirier O, Parving H-H (2000) Cardiovascular morbidity and early mortality cluster in parents of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 23:30–33

    CAS  PubMed  Google Scholar 

  • Taylor R, Agius L (1988) The biochemistry of diabetes. Biochem J 250:625–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokunaga H, Yoneda Y, Kuriyama K (1979) Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol 28:2807–2811

    CAS  PubMed  Google Scholar 

  • Tsuchitani M, Kuroda J, Nagatani M, Miura K, Katoh T, Saegusa T, Narama I, Itakura C (1990) Glycogen accumulation in the renal tubular cells of spontaneously occurring diabetic WBN/Kob rats. J Comp Pathol 102:179–190

    CAS  PubMed  Google Scholar 

  • Umhau JC, Petrulis SG, Diaz R, Riggs PA, Biddison JR, George DT (2002) Long-term abstinent alcoholics have a blunted blood glucose response to 2-deoxy-d-glucose. Alcohol Alcohol 37:586–590

    CAS  PubMed  Google Scholar 

  • van der Wiel A (2004) Diabetes mellitus and alcohol. Diabetes Metab Res Rev 20:263–267

    PubMed  Google Scholar 

  • Van Horn CG, Ivester P, Cunningham CC (2001) Chronic ethanol consumption and liver glycogen synthesis. Arch Biochem Biophys 392:145–152

    PubMed  Google Scholar 

  • Varma SD, Kinoshita JH (1974) Sorbitol pathway in diabetic and galactosemic rat lens. Biochim Biophys Acta 338:632–640

    CAS  Google Scholar 

  • Williamson JR, Scholz R, Browning ET, Thurman R, Fukami MH (1969) Metabolic effects of ethanol in perfused rat liver. J Biol Chem 244:5044–5054

    CAS  PubMed  Google Scholar 

  • Wilms B, Ben-Ami P, Söling HD (1970) Hepatic enzyme activities of glycolysis and gluconeogenesis in diabetes of man and laboratory animals. Horm Metab Res 2:135–141

    Google Scholar 

  • Xu D, Thambirajah R, Palmer TN (1992) Ethanol and glycogen synthesis in cardiothoracic and skeletal muscles following glucose re-feeding after starvation in the rat. Biochem J 288(Pt2):445–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu D, Dhillon A, Davey C, Fournier P, Palmer TN (1996) Alcohol and glucose metabolism in skeletal muscles in the rat. Addict Biol 1:71–83

    CAS  PubMed  Google Scholar 

  • Yki-Järvinen H, Nikkilä EA (1985) Ethanol decreases ethanol utilization in healthy man. J Clin Endocrinol Metab 61(5):941–945

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Patel, S.N., Parikh, M., Lau-Cam, C.A. (2015). Impact of Light Ethanol Intake and of Taurine, Separately and Together, on Pathways of Glucose Metabolism in the Kidney of Diabetic Rats. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_23

Download citation

Publish with us

Policies and ethics