Tensor Voting: Current State, Challenges and New Trends in the Context of Medical Image Analysis

  • Daniel Jörgens
  • Rodrigo MorenoEmail author
Part of the Mathematics and Visualization book series (MATHVISUAL)


Perceptual organisation techniques aim at mimicking the human visual system for extracting salient information from noisy images. Tensor voting has been one of the most versatile of those methods, with many different applications both in computer vision and medical image analysis. Its strategy consists in propagating local information encoded through tensors by means of perception-inspired rules. Although it has been used for more than a decade, there are still many unsolved theoretical issues that have made it challenging to apply it to more problems, especially in analysis of medical images. The main aim of this chapter is to review the current state of the research in tensor voting, to summarise its present challenges, and to describe the new trends that we foresee will drive the research in this field in the next few years. Also, we discuss extensions of tensor voting that could lead to potential performance improvements and that could make it suitable for further medical applications.


Vote Procedure Medical Image Analysis Greyscale Image Diffusion Kurtosis Image Good Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)Google Scholar
  2. 2.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the log-Euclidean framework. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005. Lecture Notes in Computer Science, pp. 115–122. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24(3), 307–326 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vision 92(3), 231–264 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fischer, S., Bayerl, P., Neumann, H., Redondo, R., Cristóbal, G.: Iterated tensor voting and curvature improvement. Signal Process. 87(11), 2503–2515 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vision 85(3), 253–278 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Franken, E., van Almsick, M., Rongen, P., Florack, L., ter Haar Romeny, B.: An efficient method for tensor voting using steerable filters. In: Proceedings of the 9th European Conference on Computer Vision - Volume Part IV (ECCV’06), pp. 228–240. Springer, Berlin (2006)Google Scholar
  9. 9.
    Guo, S., Yanagida, H., Fan, H., Takahashi, T., Tamura, Y.: Image enhancement of ultrasound image based on tensor voting. Trans. Jpn. Soc. Med. Biol. Eng. 47(5), 423–427 (2009)zbMATHGoogle Scholar
  10. 10.
    Guy, G., Medioni, G.: Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1265–1277 (1997)CrossRefGoogle Scholar
  11. 11.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace and Company, New York (1935)Google Scholar
  12. 12.
    Läthén, G., Jonasson, J., Borga, M.: Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recogn. Lett. 31(8), 762–767 (2010)CrossRefGoogle Scholar
  13. 13.
    Leng, Z., Korenberg, J., Roysam, B., Tasdizen, T.: A rapid 2-D centerline extraction method based on tensor voting. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, pp. 1000–1003 (2011)CrossRefGoogle Scholar
  14. 14.
    Lombardi, G., Casiraghi, E., Campadelli, P.: Curvature estimation and curve inference with tensor voting: a new approach. In: Advanced Concepts for Intelligent Vision Systems, pp. 613–624. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Loss, L.A., Bebis, G., Nicolescu, M., Skurikhin, A.: An iterative multi-scale tensor voting scheme for perceptual grouping of natural shapes in cluttered backgrounds. Comput. Vision Image Underst. 113(1), 126–149 (2009)CrossRefGoogle Scholar
  16. 16.
    Loss, L.A., Bebis, G., Parvin, B.: Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures. IEEE Trans. Med. Imaging 30(8), 1503–1513 (2011)CrossRefGoogle Scholar
  17. 17.
    Maggiori, E., Lotito, P., Manterola, H., del Fresno, M.: Comments on “A closed-form solution to tensor voting: theory and applications”. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2567–2568 (2014)CrossRefGoogle Scholar
  18. 18.
    Maggiori, E., Manterola, H.L., del Fresno, M.: Perceptual grouping by tensor voting: a comparative survey of recent approaches. IET Comput. Vision 9(2), 259–277 (2015)CrossRefGoogle Scholar
  19. 19.
    Massad, A., Babós, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Van Gool, L. (ed.) Pattern Recognition. Lecture Notes in Computer Science, pp. 306–314. German Association for Pattern Recognition (DAGM). Springer, Berlin (2002)Google Scholar
  20. 20.
    Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam (2000)zbMATHGoogle Scholar
  21. 21.
    Medioni, G., Tang, C.K., Lee, M.S.: Tensor voting: theory and applications. In: In Proceedings of RFIA. TELECOM Paris, Dept. Traitement du Signal et des Images (2000)Google Scholar
  22. 22.
    Min, C., Medioni, G.: Tensor voting accelerated by graphics processing units (GPU). In: 18th International Conference on Pattern Recognition, 2006 (ICPR 2006), vol. 3, pp. 1103–1106. IEEE, New York (2006)Google Scholar
  23. 23.
    Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82(3), 273–296 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to computer vision and machine learning. Synth. Lect. Image Video Multimed. Process. 2(1), 1–136 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mordohai, P., Medioni, G.: Dimensionality estimation, manifold learning and function approximation using tensor voting. J. Mach. Learn. Res. 11, 411–450 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Moreno, R., Garcia, M.A., Puig, D., Julia, C.: Robust color edge detection through tensor voting. In: 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 2153–2156 (2009)Google Scholar
  27. 27.
    Moreno, R., Garcia, M.A., Puig, D.: Robust color image segmentation through tensor voting. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3372–3375 (2010)Google Scholar
  28. 28.
    Moreno, R., Garcia, M.A., Puig, D., Julià, C.: Edge-preserving color image denoising through tensor voting. Comput. Vision Image Underst. 115(11), 1536–1551 (2011)CrossRefGoogle Scholar
  29. 29.
    Moreno, R., Garcia, M.A., Puig, D., Pizarro, L., Burgeth, B., Weickert, J.: On improving the efficiency of tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2215–2228 (2011)CrossRefGoogle Scholar
  30. 30.
    Moreno, R., Pizarro, L., Burgeth, B., Weickert, J., Garcia, M.A., Puig, D.: Adaption of tensor voting to image structure estimation. In: Laidlaw, D.H., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 29–50. Springer, Berlin (2012)CrossRefGoogle Scholar
  31. 31.
    Moreno, R., Garcia, M.A., Puig, D.: Tensor voting for robust color edge detection. In: Advances in Low-Level Color Image Processing. Lecture Notes in Computational Vision and Biomechanics, pp. 279–301. Springer, Berlin (2014)Google Scholar
  32. 32.
    Pasternak, O., Sochen, N., Basser, P.J.: Metric selection and diffusion tensor swelling. In: Laidlaw, D.H., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 323–336. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Reisert, M., Burkhardt, H.: Efficient tensor voting with 3D tensorial harmonics. In: Conference on Computer Vision and Pattern Recognition Workshops, 2008 (CVPRW’08). IEEE Computer Society, pp. 1–7. IEEE, New York (2008)CrossRefGoogle Scholar
  34. 34.
    Risser, L., Plouraboue, F., Descombes, X.: Gap filling of 3-D microvascular networks by tensor voting. IEEE Trans. Med. Imaging 27(5), 674–687 (2008)CrossRefGoogle Scholar
  35. 35.
    Schultz, T.: Towards resolving fiber crossings with higher order tensor inpainting. In: Laidlaw, D.H., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 253–266. Springer, Berlin (2012)CrossRefGoogle Scholar
  36. 36.
    Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)CrossRefGoogle Scholar
  37. 37.
    Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.H.: Higher-order tensors in diffusion imaging. In: Westin, C.F., Vilanova, A., Burgeth, B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, pp. 129–161. Springer, Berlin (2014)Google Scholar
  38. 38.
    Sha’ashua, A., Ullman, S.: Structural Saliency: The Detection of Globally Salient Structures Using a Locally Connected Network, pp. 321–327. IEEE, New York (1988)Google Scholar
  39. 39.
    Tang, C.K., Medioni, G.: Curvature-augmented tensor voting for shape inference from noisy 3D data. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 858–864 (2002)CrossRefGoogle Scholar
  40. 40.
    Tang, C.K., Medioni, G., Duret, F.: Automatic, accurate surface model inference for dental CAD/CAM. In: Wells, W., Colchester, A., Delp, S. (eds.) Medical Image Computing and Computer-Assisted Interventation — MICCAI’98. Lecture Notes in Computer Science, vol. 1496, pp. 732–742. Springer, Berlin (1998)Google Scholar
  41. 41.
    Tong, W.S., Tang, C.K.: Robust estimation of adaptive tensors of curvature by tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 434–449 (2005)CrossRefGoogle Scholar
  42. 42.
    Tong, W.S., Tang, C.K., Mordohai, P., Medioni, G.: First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 594–611 (2004)CrossRefGoogle Scholar
  43. 43.
    van Almsick, M., Duits, R., Franken, E., ter Haar Romeny, B.: From stochastic completion fields to tensor voting. In: Deep Structure, Singularities, and Computer Vision, pp. 124–134. Springer, Berlin (2005)Google Scholar
  44. 44.
    Williams, L.R., Jacobs, D.W.: Stochastic completion fields: a neural model of illusory contour shape and salience. In: Proceedings of the Fifth International Conference on Computer Vision, 1995, pp. 408–415. IEEE, New York (1995)Google Scholar
  45. 45.
    Wu, T.P., Yeung, S.K., Jia, J., Tang, C.K., Medioni, G.: A closed-form solution to tensor voting: theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1482–1495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Technology and Health, KTH FlemingsbergHuddingeSweden

Personalised recommendations