Advertisement

Topology of 3D Linear Symmetric Tensor Fields

  • Yue ZhangEmail author
  • Jonathan Palacios
  • Eugene Zhang
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

There has been much research in 3D symmetric tensor fields, including recent work on tensor field topology. In this book chapter, we apply these research results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields, and provide some novel insights on such fields. We also propose a number of hypotheses about linear tensor fields. We hope by studying linear tensor fields, we can gain more critical insights into the topology of general 3D tensor fields in the future.

Keywords

Tensor Field Traceless Tensor Tensor Index Degenerate Point Degenerate Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyperstream lines. IEEE Comput. Graph. Appl. 13(4), 25–33 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: Proceedings IEEE Visualization ’94 (1994)Google Scholar
  3. 3.
    Fulton, W.: Algebraic Curves: An Introduction to Algebraic Geometry. Advanced Book Classics. Addison-Wesley, Redwood City, CA (1989)Google Scholar
  4. 4.
    Hesselink, L., Levy, Y., Lavin, Y.: The topology of symmetric, second-order 3D tensor fields. IEEE Trans. Vis. Comput. Graph. 3(1), 1–11 (1997)CrossRefGoogle Scholar
  5. 5.
    Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: moving beyond the symmetric positive-definite case. Comput. Graph. Forum 32(1), 49–74 (2013). http://dblp.uni-trier.de/db/journals/cgf/cgf32.html#KratzASH13
  6. 6.
    Tricoche, X., Scheuermann, G.: Topology simplification of symmetric, second-order 2d tensor fields. In: Geometric Modeling Methods in Scientific Visualization. Springer, Berlin (2003)Google Scholar
  7. 7.
    Tricoche, X., Kindlmann, G., Westin, C.F.: Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans. Vis. Comput. Graph. 14(6), 1627–1634 (2008). http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.148
  8. 8.
    Zhang, S., Kindlmann, G., Laidlaw, D.H.: Diffusion tensor MRI visualization. In: Visualization Handbook. Academic, Amsterdam (2004). http://www.cs.brown.edu/research/vis/docs/pdf/Zhang-2004-DTM.pdf
  9. 9.
    Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Trans. Graph. 25(4), 1294–1326 (2006)CrossRefGoogle Scholar
  10. 10.
    Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)CrossRefGoogle Scholar
  11. 11.
    Zheng, X., Pang, A.: Topological lines in 3d tensor fields. In: Proceedings IEEE Visualization 2004, VIS ’04, pp. 313–320. IEEE Computer Society, Washington, DC (2004). doi:10.1109/VISUAL.2004.105. http://dx.doi.org/10.1109/VISUAL.2004.105
  12. 12.
    Zheng, X., Parlett, B., Pang, A.: Topological structures of 3D tensor fields. In: Proceedings IEEE Visualization 2005, pp. 551–558 (2005)Google Scholar
  13. 13.
    Zheng, X., Parlett, B.N., Pang, A.: Topological lines in 3d tensor fields and discriminant hessian factorization. IEEE Trans. Vis. Comput. Graph. 11(4), 395–407 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science, 3117 Kelley Engineering CenterOregon State UniversityCorvallisUSA
  2. 2.School of Electrical Engineering and Computer Science, 2111 Kelley Engineering CenterOregon State UniversityCorvallisUSA

Personalised recommendations