A Framework for the Analysis of Diffusion Compartment Imaging (DCI)

  • Maxime TaquetEmail author
  • Benoit Scherrer
  • Simon K. Warfield
Part of the Mathematics and Visualization book series (MATHVISUAL)


The brain microstructure consists of the complex organization of cellular structures and extra-cellular space. Insights into this microstructure can be gained in vivo by means of diffusion-weighted imaging that is sensitive to the local patterns of diffusion of water molecules throughout the brain. Diffusion compartment imaging (DCI) provides a separate parameterization for the diffusion signal arising from each compartment of water molecules at each voxel. Their use in population studies and longitudinal monitoring of diseases hold promise for unraveling alterations of the brain microstructure in various disorders and conditions. Yet, to analyze multi-compartment models, high-level operations commonly used in scalar images need to be generalized. We present a framework that enables interpolation, averaging, filtering, spatial normalization and statistical analyses of multi-compartment data with a focus on multi-tensor representations. This framework is based on the generalization of linear combinations of voxel values through mixture simplification. We illustrate the impact of this framework in registration, atlas construction, tractography and population studies.


Autism Spectrum Disorder Autism Spectrum Disorder Diffusion Tensor Image Complete Model Tuberous Sclerosis Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  2. 2.
    Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005)CrossRefGoogle Scholar
  3. 3.
    Cabeen, R.P., Bastin, M.E., Laidlaw, D.H.: Estimating constrained multi-fiber diffusion MR volumes by orientation clustering. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 82–89. Springer, Berlin (2013)Google Scholar
  4. 4.
    Collard, A., Bonnabel, S., Phillips, C., Sepulchre, R.: Anisotropy preserving DTI processing. Int. J. Comput. Vis. 107(1), 58–74 (2014)CrossRefGoogle Scholar
  5. 5.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: a convergence study. Comput. Vis. Image Underst. 77(2), 192–210 (2000)CrossRefGoogle Scholar
  6. 6.
    Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34(11), 2747–2766 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Malcolm, J.G., Shenton, M.E., Rathi, Y.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29(9), 1664–1675 (2010)CrossRefGoogle Scholar
  8. 8.
    Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)Google Scholar
  9. 9.
    Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15(1), 1–25 (2002)CrossRefGoogle Scholar
  10. 10.
    Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage 59(3), 2241–2254 (2012)CrossRefGoogle Scholar
  11. 11.
    Pasternak, O., Westin, C.F., Bouix, S., Seidman, L.J., Goldstein, J.M., Woo, T.U.W., Petryshen, T.L., Mesholam-Gately, R.I., McCarley, R.W., Kikinis, R., et al.: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J. Neurosci. 32(48), 17365–17372 (2012)CrossRefGoogle Scholar
  12. 12.
    Peters, J.M., Taquet, M., Prohl, A.K., Scherrer, B., van Eeghen, A.M., Prabhu, S.P., Sahin, M., Warfield, S.K.: Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol. 8(5), 583–597 (2013)CrossRefGoogle Scholar
  13. 13.
    Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion mri. PLoS One 7(11), e48232 (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Scherrer, B., Schwartzman, A., Taquet, M., Prabhu, S.P., Sahin, M., Akhondi-Asl, A., Warfield, S.K.: Characterizing the distribution of anisotropic micro-structural environments with diffusion-weighted imaging (diamond). In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 518–526. Springer, Berlin (2013)Google Scholar
  15. 15.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4), 1487–1505 (2006)CrossRefGoogle Scholar
  16. 16.
    Taquet, M., Macq, B., Warfield, S.K.: A generalized correlation coefficient: application to DTI and multi-fiber DTI. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 9–14. IEEE, Breckenridge (2012)Google Scholar
  17. 17.
    Taquet, M., Scherrer, B., Benjamin, C., Prabhu, S., Macq, B., Warfield, S.K.: Interpolating multi-fiber models by gaussian mixture simplification. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 928–931. IEEE, Barcelona (2012)Google Scholar
  18. 18.
    Taquet, M., Scherrer, B., Commowick, O., Peters, J., Sahin, M., Macq, B., Warfield, S.K.: Registration and analysis of white matter group differences with a multi-fiber model. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, pp. 313–320. Springer, Berlin (2012)Google Scholar
  19. 19.
    Taquet, M., Scherrer, B., Boumal, N., Macq, B., Warfield, S.K.: Estimation of a multi-fascicle model from single b-value data with a population-informed prior. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 695–702. Springer, Berlin (2013)Google Scholar
  20. 20.
    Taquet, M., Scherrer, B., Macq, B., Warfield, S.K., et al.: Multi-fascicle model reconstruction from acquisitions at a single b-value with a population-informed prior. In: Proceedings of the 21st International Symposium on Magnetic Resonance in Medicine (ISMRM), vol. 30 (2013)Google Scholar
  21. 21.
    Taquet, M., Scherrer, B., Peters, J.M., Prabhu, S.P., Warfield, S.K.: A fully bayesian inference framework for population studies of the brain microstructure. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. Springer, Berlin (2014)Google Scholar
  22. 22.
    Taquet, M., Scherrer, B., Commowick, O., Peters, J., Sahin, M., Macq, B., Warfield, S.: A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure. IEEE Trans. Med. Imaging 33(2), 504–517 (2014)CrossRefGoogle Scholar
  23. 23.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)CrossRefGoogle Scholar
  24. 24.
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577–584 (2001)Google Scholar
  25. 25.
    Zhang, K., Kwok, J.T.: Simplifying mixture models through function approximation. In: Advances in Neural Information Processing Systems, pp. 1577–1584 (2006)Google Scholar
  26. 26.
    Zhang, K., Kwok, J.T.: Simplifying mixture models through function approximation. IEEE Trans. Neural Netw. 21(4), 644–658 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maxime Taquet
    • 1
    Email author
  • Benoit Scherrer
    • 1
  • Simon K. Warfield
    • 1
  1. 1.Computational Radiology LaboratoryBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations