Skip to main content

A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography

  • Conference paper
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Fiber tracking is a common method for analyzing 3D tensor fields that arise from diffusion-weighted magnetic resonance imaging. This method can visualize, e.g., the structure of the brain’s white matter or that of muscle tissue. Fiber tracking results in dense, line-based datasets that are often too large to understand when shown directly. This chapter provides a survey of recent illustrative visualization approaches that address this problem. We group this work into techniques that improve the depth perception of fiber tracts, techniques that visualize additional data about the tracts, techniques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is also true for probabilistic tracking [4], even if probabilistic tractography results—due to the size of the generated data—are typically visualized by displaying the scalar probabilities that different brain regions are connected to a seed region. In fact, these dataset sizes are one motivation to employ illustrative visualization as it promises to present the data in an understandable form.

  2. 2.

    Surveys of the use of illustrative visualization techniques for domains other than brain connectivity have been presented for flow visualization [10] and as a general tutorial/overview [63].

  3. 3.

    The chapter focuses on the visualization of brain connectivity. The discussed methods, however, can also be applied to other datasets that have similar characteristics, for example muscle fiber data.

  4. 4.

    For a comparison of simple line rendering, shaded tubes, illuminated line rendering, and illuminated line rendering with shadowing see Figure 4 in Peeters et al.’s [49] paper.

  5. 5.

    Everts et al.’s [24] approach could be viewed as an abstraction of line-based rendering with shadowing: it uses lines as the basic primitive, conveys occlusion, and does not rely on line shading.

  6. 6.

    Halos had previously already been used in computer graphics [2] and visualization [13, 64].

  7. 7.

    The example images in Fig. 2 were created with the depth-dependent halos demo; see the project website at http://tobias.isenberg.cc/VideosAndDemos/Everts2009DDH .

  8. 8.

    Ambient occlusion has also already been used in other sub-fields of visualization [62].

  9. 9.

    The example images in Figs. 1 and 4 were created with the tool OpenWalnut [19, 20]; see the website at http://www.openwalnut.org/ .

  10. 10.

    In the context of the brain connectivity visualization, Laidlaw et al. [40] have used this principle to illustratively show slices of DTI data based on inspirations from oil painting.

  11. 11.

    Everts et al. [25] extended this idea, encoding data properties in (colored) patterns for flow data.

  12. 12.

    The example images in Fig. 9 were created with the project’s demo; see the website at http://tobias.isenberg.cc/VideosAndDemos/Svetachov2010DCI .

  13. 13.

    The example images in Fig. 12 were created with the vIST/e project’s demo (using a test release); see the website at http://bmia.bmt.tue.nl/software/viste/ and the SourceForge repository at http://sourceforge.net/projects/viste/files/ .

  14. 14.

    The images in Fig. 13 were created with DTITool (provided by Ralph Brecheisen), an early version of the vIST/e software.

  15. 15.

    A downloadable demo of Jianu et al.’s [36] technique is available at http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/tutorial.htm and an online demo can be found at http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/BrainComplete/P3/gmap_brain.html .

  16. 16.

    The example image in Fig. 17 was created with the braingl tool, see the webpage at http://code.google.com/p/braingl/ .

References

  1. Anwander, A., Schurade, R., Hlawitschka, M., Scheuermann, G., Anderson, T.R., Knösche, T.R.: White matter imaging with virtual Klingler dissection. NeuroImage 47(Suppl. 1), S105 (2009). doi:10.1016/S1053-8119(09)70916-4

  2. Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination. ACM SIGGRAPH Comput. Graphics 13(3), 151–157 (1979). doi:10.1145/800249.807437

    Article  Google Scholar 

  3. Bach, B., Dragicevic, P., Huron, S., Isenberg, P., Jansen, Y., Perin, C., Spritzer, A., Vuillemot, R., Willett, W., Isenberg, T.: Illustrative data graphics in 18th–19th century style: A case study. In: Posters at IEEE Visualization (2013). Extended abstract and poster

    Google Scholar 

  4. Behrens, T.E.J., Sotiropoulos, S.N., Jbabdi, S.: MR diffusion tractography. In: Johansen-Berg, H., Behrens, T.E.J. (eds.) Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, 2nd edn., Chap. 19, pp. 429–451. Academic Press, San Diego (2014). doi:10.1016/B978-0-12-396460-1.00019-6

    Chapter  Google Scholar 

  5. Berres, A.S., Goldau, M., Tittgemeyer, M., Scheuermann, G., Hagen, H.: Tractography in context: multimodal visualization of probabilistic tractograms in anatomical context. In: Proceedings of VCBM, pp. 9–16. Eurographics Association, Goslar (2012). doi:10.2312/VCBM/VCBM12/009-016

  6. Berres, A.S., Goldau, M., Tittgemeyer, M., Scheuermann, G., Hagen, H.: Tractography in context: multimodal visualization of probabilistic tractograms in anatomical context. In: Posters of IEEE BioVis (2012)

    Google Scholar 

  7. Born, S., Jainek, W.M., Hlawitschka, M., Trantakis, C., Meixensberger, J., Bartz, D.: Multimodal visualization of DTI and fMRI data using illustrative methods. In: Bildverarbeitung für die Medizin, pp. 6–10. Springer, Berlin/Heidelberg (2009). doi:10.1007/978-3-540-93860-6_2

  8. Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Vis. Comput. Graphics 20(3), 471–480 (2014). doi:10.1109/TVCG.2013.114

    Article  Google Scholar 

  9. Boukhelifa, N., Bezerianos, A., Isenberg, T., Fekete, J.D.: Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans. Vis. Comput. Graphics 18(12), 2769–2778 (2012). doi:10.1109/TVCG.2012.220

    Article  Google Scholar 

  10. Brambilla, A., Carnecky, R., Peikert, R., Viola, I., Hauser, H.: Illustrative flow visualization: state of the art, trends and challenges. In: Eurographics State of the Art Reports, pp. 75–94. Eurographics Association, Goslar (2012). doi:10.2312/conf/EG2012/stars/075-094

  11. Brecheisen, R., Platel, B., ter Haar Romeny, B.M., Vilanova, A.: Illustrative uncertainty visualization of DTI fiber pathways. In: EuroVis Posters (2011)

    Google Scholar 

  12. Brecheisen, R., Platel, B., ter Haar Romeny, B.M., Vilanova, A.: Illustrative uncertainty visualization of DTI fiber pathways. Vis. Comput. 29(4), 297–309 (2013). doi:10.1007/s00371-012-0733-9

    Article  Google Scholar 

  13. Bruckner, S., Gröller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graphics 13(6), 1344–1351 (2007). doi:10.1109/TVCG.2007.70555

    Article  Google Scholar 

  14. Bryson, S.: Virtual reality in scientific visualization. Commun. ACM 39(5), 62–71 (1996). doi:10.1145/229459.229467

    Article  Google Scholar 

  15. Chen, W., Yan, Z., Zhang, S., Crow, J.A., Ebert, D.S., McLaughlin, R.M., Mullins, K.B., Cooper, R., Ding, Z., Liao, J.: Volume illustration of muscle from diffusion tensor images. IEEE Trans. Vis. Comput. Graphics 15(6), 1425–1432 (2009). doi:10.1109/TVCG.2009.203

    Article  Google Scholar 

  16. Correa, C.D., Silver, D., Chen, M.: Illustrative deformation for data exploration. IEEE Trans. Vis. Comput. Graphics 13(6), 1320–1327 (2007). doi:10.1109/TVCG.2007.70565

    Article  Google Scholar 

  17. Díaz-García, J.: Rapid halo-based illustrative visualization of brain fiber tracts. Master’s thesis, BarcelonaTech/Universitat Politècnica de Catalunya, Spain (2011). doi:2099.1/14366

  18. Díaz-García, J., Vázquez, P.P.: Fast illustrative visualization of fiber tracts. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 7431, pp. 698–707. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-33179-4_66

  19. Eichelbaum, S., Goldau, M., Philips, S., Reichenbach, A., Schurade, R., Wiebel, A.: OpenWalnut: A new tool for multi-modal visualization of the human brain. In: Posters of EG VCBM (2010)

    Google Scholar 

  20. Eichelbaum, S., Hlawitschka, M., Wiebel, A., Scheuermann, G.: OpenWalnut – An open-source visualization system. In: Proceedings of 6th High-End Visualization Workshop, pp. 67–78. Lehmanns Media—LOB.de, Berlin (2010)

    Google Scholar 

  21. Eichelbaum, S., Wiebel, A., Hlawitschka, M., Anwander, A., Knösche, T.R., Scheuermann, G.: Visualization of effective connectivity of the brain. In: Proceedings of VMV, pp. 155–162. Eurographics Association, Goslar (2010). doi:10.2312/PE/VMV/VMV10/155-162

  22. Eichelbaum, S., Hlawitschka, M., Scheuermann, G.: LineAO—Improved three-dimensional line rendering. IEEE Trans. Vis. Comput. Graphics 19(3), 433–445 (2013). doi:10.1109/TVCG.2012.142

    Article  Google Scholar 

  23. Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization of white matter tracts with wrapped streamlines. In: Proceedings of Visualization, IEEE Computer Society, Los Alamitos, pp. 51–58 (2005). doi:10.1109/VISUAL.2005.1532777

  24. Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Depth-dependent halos: Illustrative rendering of dense line data. IEEE Trans. Vis. Comput. Graphics 15(6), 1299–1306 (2009). doi:10.1109/TVCG.2009.138

    Article  Google Scholar 

  25. Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Illustrative line styles for flow visualization. In: Proceedings of Pacific Graphics, pp. 105–110. Eurographics Association, Goslar (2011). doi:10.2312/PE/PG/PG2011short/105-110

  26. Everts, M.H., Begue, E., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Exploration of the brain’s white matter structure through visual abstraction and multi-scale local fiber tract contraction. IEEE Trans. Vis. Comput. Graphics 21 (2015, to appear). doi:10.1109/TVCG.2015.2403323)

  27. Goldau, M., Hlawitschka, M.: Multi-modal visualization of probabilistic tractography. In: Visualization in Medicine and Life Sciences III. Springer, Berlin (2015)

    Google Scholar 

  28. Goldau, M., Wiebel, A., Gorbach, N.S., Melzer, C., Hlawitschka, M., Scheuermann, G., Tittgemeyer, M.: Fiber stippling: An illustrative rendering for probabilistic diffusion tractography. In: Proceedings of BioVis, pp. 23–30. IEEE Computer Society, Los Alamitos (2011). doi:10.1109/BioVis.2011.6094044

  29. Gooch, A.A., Gooch, B., Shirley, P., Cohen, E.: A non-photorealistic lighting model for automatic technical illustration. In: Proceedings of SIGGRAPH, pp. 447–452. ACM, New York (1998). doi:10.1145/280814.280950

  30. Hermosilla, P., Brecheisen, R., Vázquez, P.P., Vilanova, A.: Uncertainty visualization of brain fibers. In: Proceedings of CEIG, pp. 31–40. Eurographics Association, Goslar (2012). doi:10.2312/LocalChapterEvents/CEIG/CEIG12/031-040

  31. Hlawitschka, M., Goldau, M., Wiebel, A., Heine, C., Scheuermann, G.: Hierarchical Poisson-disk sampling for fiber stipples. In: Visualization in Medicine and Life Sciences, pp. 19–23. Eurographics Association, Goslar (2013). doi:10.2312/PE.VMLS.VMLS2013.019-023

  32. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graphics 12(5), 741–748 (2006). doi:10.1109/TVCG.2006.147

    Article  Google Scholar 

  33. Jainek, W.: Illustrative visualization of brain structure and functional MRI data. Master’s thesis, Eberhard-Karls-Universität Tübingen, Germany (2007)

    Google Scholar 

  34. Jainek, W.M., Born, S., Bartz, D., Straßer, W., Fischer, J.: Illustrative hybrid visualization and exploration of anatomical and functional brain data. Comput. Graphics Forum 27(3), 855–862 (2008). doi:10.1111/j.1467-8659.2008.01217.x

    Article  Google Scholar 

  35. Jianu, D., Zhou, W., Demiralp, Ç., Laidlaw, D.H.: Visualizing spatial relations between 3D-DTI integral curves using texture patterns. In: IEEE Visualization Poster Compendium (2007)

    Google Scholar 

  36. Jianu, R., Demiralp, Ç., Laidlaw, D.H.: Exploring brain connectivity with two-dimensional neural maps. IEEE Trans. Vis. Comput. Graphics 18(6), 978–987 (2012). doi:10.1109/TVCG.2011.82

    Article  Google Scholar 

  37. Johansen-Berg, H., Behrens, T.E.J. (eds.): Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, 2nd edn. Academic Press, San Diego (2014). doi:10.1016/B978-0-12-396460-1.01001-5

    Google Scholar 

  38. Klein, J., Ritter, F., Hahn, H.K., Rexilius, J., Peitgen, H.O.: Brain structure visualization using spectral fiber clustering. In: ACM SIGGRAPH 2006 Research Posters, New York, p. 168(1) (2006). doi:10.1145/1179622.1179816

  39. Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comput. Graphics Forum 32(1), 49–74 (2013). doi:10.1111/j.1467-8659.2012.03231.x

    Article  Google Scholar 

  40. Laidlaw, D.H., Ahrens, E.T., Kremers, D., Avalos, M.J., Jacobs, R.E., Readhead, C.: Visualizing diffusion tensor images of the mouse spinal cord. In: Proceedings of Visualization, pp. 127–134. IEEE Computer Society, Los Alamitos (1998). doi:10.1109/VISUAL.1998.745294

  41. Li, L., Shen, H.W.: Image-based streamline generation and rendering. IEEE Trans. Vis. Comput. Graphics 13(3), 630–640 (2007). doi:10.1109/TVCG.2007.1009

    Article  Google Scholar 

  42. Mallo, O., Peikert, R., Sigg, C., Sadlo, F.: Illuminated lines revisited. In: Proceedings of Visualization, pp. 19–26. IEEE Computer Society, Los Alamitos (2005). doi:10.1109/VISUAL.2005.1532772

  43. Margulies, D.S., Böttger, J., Watanabe, A., Gorgolewski, K.J.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013). doi:10.1016/j.neuroimage.2013.04.111

    Article  Google Scholar 

  44. Mittring, M.: Finding next gen: CryEngine 2. In: ACM SIGGRAPH Courses, New York, Chap. 28, pp. 97–121 (2007). doi:10.1145/1281500.1281671

  45. Mori, S., van Zijl, P.C.: Fiber tracking: Principles and strategies – A technical review. NMR Biomed. 15(7–8), 468–480 (2002). doi:10.1002/nbm.781

    Article  Google Scholar 

  46. Otten, R.J.G.: Illustrative rendering of white matter fiber bundles. Master’s thesis, TU Eindhoven, Department of Mathematics and Computer Science, the Netherlands (2009)

    Google Scholar 

  47. Otten, R., Vilanova, A., van de Wettering, H.M.M.: Illustrative white matter fiber bundles. Comput. Graphics Forum 29(3), 1013–1022 (2010). doi:10.1111/j.1467-8659.2009.01688.x

    Article  Google Scholar 

  48. Parker, G.J.M.: Probabilistic fiber tracking. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, Chap. 23. Oxford University Press, Oxford (2010). doi:10.1093/med/9780195369779.003.0023

    Google Scholar 

  49. Peeters, T.H.J.M., Vilanova, A., Strijkers, G.J., ter Haar Romeny, B.M.: Visualization of the fibrous structure of the heart. In: Proceedings of VMV, pp. 309–316. Akademische Verlagsgesellschaft Aka GmbH, Berlin (2006)

    Google Scholar 

  50. Petrovic, V., Fallon, J., Kuester, F.: Visualizing whole-brain DTI tractography with GPU-based tuboids and LoD management. IEEE Trans. Vis. Comput. Graphics 13(6), 1488–1495 (2007). doi:10.1109/TVCG.2007.70532

    Article  Google Scholar 

  51. Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.T.M.: Visualization in connectomics. Technical Report 1206.1428 [cs.GR], arXiv.org (2012)

    Google Scholar 

  52. Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.T.M.: Visualization in connectomics. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific Visualization, Mathematics and Visualization, pp. 221–245. Springer, London (2014). doi:10.1007/978-1-4471-6497-5_21

    Google Scholar 

  53. Rautek, P., Bruckner, S., Gröller, E., Viola, I.: Illustrative visualization: New technology or useless tautology? ACM SIGGRAPH Comput. Graphics 42(3), 4:1–4:8 (2008). doi:10.1145/1408626.1408633

  54. Reichenbach, A., Goldau, M., Hlawitschka, M.: Combined three-dimensional visualization of structural connectivity and cortex parcellation. In: Proceedings of VMV, pp. 71–78. Eurographics Association, Goslar (2014). doi:10.2312/vmv.20141278

  55. Rieder, C., Brachmann, C., Hofmann, B., Klein, J., Köhn, A., Ojdanic, D., Schumann, C., Weiler, F., Hahn, H.K.: Interactive visualization of neuroanatomical data for a hands-on multimedia exhibit. In: Proceedings of VMLS, pp. 37–41. Eurographics Association, Goslar (2013). doi:10.2312/PE.VMLS.VMLS2013.037-041

  56. Röttger, D., Merhof, D., Müller, S.: The BundleExplorer: A focus and context rendering framework for complex fiber distributions. In: Proceedings of VCBM, pp. 1–8. Eurographics Association, Goslar (2012). doi:10.2312/VCBM/VCBM12/001-008

  57. Schott, M., Martin, T., Grosset, A.V.P., Brownlee, C., Höllt, T., Brown, B.P., Smith, S.T., Hansen, C.D.: Combined surface and volumetric occlusion shading. In: Proceedings of PacificVis, pp. 169–176. IEEE, Los Alamitos (2012). doi:10.1109/PacificVis.2012.6183588

  58. Schott, M., Martin, T., Grosset, A.V., Smith, S., Hansen, C.D.: Ambient occlusion effects for combined volumes and tubular geometry. IEEE Trans. Vis. Comput. Graphics 19(6), 913–926 (2013). doi:10.1109/TVCG.2012.306

    Article  MATH  Google Scholar 

  59. Schultz, T., Sauber, N., Anwander, A., Theisel, H., Seidel, H.P.: Virtual Klingler dissection: Putting fibers into context. In: Proceedings of EuroVis, pp. 1063–1070. Eurographics Association, Goslar (2008). doi:10.1111/j.1467-8659.2008.01243.x

  60. Shafii, S., Obermaier, H., Kolář, V., Hlawitschka, M., Garth, C., Hamann, B., Joy, K.I.: Illustrative rendering of vortex cores. In: Proceedings of EuroVis, pp. 61–65. Eurographics Association, Goslar (2013). doi:10.2312/PE.EuroVisShort.EuroVisShort2013.061-065

  61. Svetachov, P., Everts, M.H., Isenberg, T.: DTI in context: Illustrating brain fiber tracts in situ. Comput. Graphics Forum 29(3), 1024–1032 (2010). doi:10.1111/j.1467-8659.2009.01692.x

    Article  Google Scholar 

  62. Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graphics 12(5), 1237–1244 (2006). doi:10.1109/TVCG.2006.115

    Article  Google Scholar 

  63. Viola, I., Gröller, M.E., Hadwiger, M., Bühler, K., Preim, B., Sousa, M.C., Ebert, D., Stredney, D.: Illustrative visualization. In: IEEE Visualization Tutorials, Chap. 4 IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  64. Wenger, A., Keefe, D.F., Zhang, S., Laidlaw, D.H.: Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE Trans. Vis. Comput. Graphics 10(6), 664–672 (2004). doi:10.1109/TVCG.2004.46

    Article  Google Scholar 

  65. Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Vis. Comput. Graphics 18(12), 2749–2758 (2012). doi:10.1109/TVCG.2012.262

    Article  Google Scholar 

  66. Zhang, S., Demiralp, Ç., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans. Vis. Comput. Graphics 9(4), 454–462 (2003). doi:10.1109/TVCG.2003.1260740

    Article  Google Scholar 

  67. Zhang, S., Laidlaw, D.H., Kindlmann, G.: Diffusion tensor MRI visualization. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, Chap. 16, pp. 327–340. Elsevier, Oxford (2004). doi:10.1016/B978-012387582-2/50017-4

    Google Scholar 

  68. Zhukov, L., Barr, A.H.: Heart-muscle fiber reconstruction from diffusion tensor MRI. In: Proceedings of Visualization, pp. 597–602. IEEE Computer Society, Los Alamitos (2003). doi:10.1109/VISUAL.2003.1250425

  69. Zhukov, L., Barr, A.H.: Oriented tensor reconstruction. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, Chap. 15, pp. 313–326. Elsevier, Oxford (2004). doi:10.1016/B978-012387582-2/50017-4

    Google Scholar 

  70. Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Rendering Techniques, pp. 45–55. Springer, Vienna (1998). doi:10.1007/978-3-7091-6453-2_5

  71. Zöckler, M., Stalling, D., Hege, H.C.: Interactive visualization of 3D-vector fields using illuminated stream lines. In: Proceedings of Visualization, pp. 107–113. IEEE Computer Society, Los Alamitos (1996). doi:10.1109/VISUAL.1996.567777

Download references

Acknowledgements

I would like to thank all of the people who provided example images, tried to find material from old sources, or referred me to others—sometimes on very short notice. In particular, I would like to thank Joachim Böttger, Silvia Born, Ralph Brecheisen, Jesús Díaz-García, Mathias Goldau, Mario Hlawitschka, Radu Jianu, Daniel F. Keefe, Mathias Schott, Thomas Schultz, Pere-Pau Vázquez, and Anna Vilanova. I also specifically wish to thank those authors who provided demo applications of their publications that I could use to create my own example visualizations. Finally, I would like to thank Kai Lawonn and Wesley Willet as well as the anonymous reviewers for their valuable comments on drafts of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Isenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Isenberg, T. (2015). A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_12

Download citation

Publish with us

Policies and ethics