Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal

  • Olivier Vaillancourt
  • Maxime Chamberland
  • Jean-Christophe Houde
  • Maxime DescoteauxEmail author
Part of the Mathematics and Visualization book series (MATHVISUAL)


New advances in MRI technology allow the acquisition of high resolution diffusion-weighted datasets for multiple parameters such as multiple q-values, multiple b-values, multiple orientations and multiple diffusion times. These new and demanding acquisitions go beyond classical diffusion tensor imaging (DTI) and single b-value high angular resolution diffusion imaging (HARDI) acquisitions. Recent studies show that such multiple parameter diffusion can be used to infer axonal diameter distribution and other biophysical features of the white matter, otherwise not possible. Hence, this calls for novel visualization techniques to interact with such complex high-dimensional and high-resolution datasets. To date, there are no existing visualization techniques to visualize full brain images or fields of diffusion signal profiles and diffusion propagators reconstructed from them. It is important to be able to scroll in these images beyond single voxels, just as one would navigate in a whole brain map of fractional anisotropy extracted from DTI. In this chapter, we give a review of the existing visualization techniques for the local diffusion phenomenon and propose alternative visualization techniques for fields of high-dimensional 3D diffusion profiles. We introduce: (i) a volume rendering approach and (ii) a diffusion propagator silhouette glyph as a complement to existing DTI and HARDI visualization techniques. We show that these visualization techniques allow the real-time exploration of high-dimensional multi-b-value and multi-direction data such as diffusion spectrum imaging (DSI). Our visualization technique therefore opens new perspectives for 3D diffusion MRI visualization and interaction.


Diffusion Tensor Image Graphic Processing Unit Visualization Technique Volume Rendering Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank our funding agencies, NSERC, MDEIE and CFI in Canada. Also, a special thanks to Michele Bosi for the open-source visualization library. Finally, thanks to Guillaume Gilbert from Philips Healthcare, MR Clinical Science, for the DSI datasets.


  1. 1.
    Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J., Keil, B., Tisdall, M., Hoecht, P., Dietz, P., Cauley, S., Tountcheva, V., Matschl, V., Lenz, V., Heberlein, K., Potthast, A., Thein, H., Horn, J.V., Toga, A., Schmitt, F., Al., E.: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. NeuroImage 80, 220–233 (2013)CrossRefGoogle Scholar
  2. 2.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Essen, D.C.V., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80, 125–143 (2013)CrossRefGoogle Scholar
  3. 3.
    Uurbil, K., Xu, J., Auerbach, E.J., Moeller, S., Vu, A.T., Duarte-Carvajalino, J.M., Lenglet, C., Wu, X., Schmitter, S., de Moortele, P.F.V., Strupp, J., Sapiro, G., Martino, F.D., Wang, D., Harel, N., Garwood, M., Chen, L., Feinberg, D.A., Smith, S.M., Miller, K.L., et al.: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. NeuroImage 80, 80–104 (2013)CrossRefGoogle Scholar
  4. 4.
    Bilgic, B., Setsompop, K., Cohen-Adad, J., Yendiki, A., Wald, L.L., Adalsteinsson, E.: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn. Reson. Med. Rapid Commun. 68(6), 1747–1754 (2012)CrossRefGoogle Scholar
  5. 5.
    Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52, 965–978 (2004)CrossRefGoogle Scholar
  6. 6.
    Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005)CrossRefGoogle Scholar
  7. 7.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008)CrossRefGoogle Scholar
  8. 8.
    Cohen, Y., Assaf, Y.: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review. NMR Biomed. 15, 516–542 (2002)CrossRefGoogle Scholar
  9. 9.
    Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52(4), 1374–1389 (2010)CrossRefGoogle Scholar
  10. 10.
    Callaghan, P., Eccles, C., Xia, Y.: Rapid communication: NMR microscopy of dynamic displacements: k-space and q-space imaging. J. Phys. E Sci. Instrum. 21, 820–822 (1988)CrossRefGoogle Scholar
  11. 11.
    Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, Oxford (1991)Google Scholar
  12. 12.
    Kuchel, P., Coy, A., Stilbs, P.: Nmr ‘diffusion-diffraction’ of water revealing alignment of erythrocytes in a magnetic field and their dimensions and membrane transport characteristics. Magn. Reson. Med. 37(5), 673–643 (1997)CrossRefGoogle Scholar
  13. 13.
    Stejskal, E., Tanner, J.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)CrossRefGoogle Scholar
  14. 14.
    Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  15. 15.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: The geometric structure of the brain fiber pathways. Science (New York, NY) 335(6076), 1628–1634 (2012)Google Scholar
  16. 16.
    Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2(7), e597 (2007)CrossRefGoogle Scholar
  17. 17.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106(6), 2035–2040 (2009)CrossRefGoogle Scholar
  18. 18.
    Wu, Y.C., Alexander, A.L.: Hybrid diffusion imaging. NeuroImage 36, 617–629 (2007)CrossRefGoogle Scholar
  19. 19.
    Descoteaux, M., Deriche, R., Bihan, D.L., Mangin, J.F., Poupon, C.: Multiple q-shell diffusion propagator imaging. Med. Image Anal. 15, 603–621 (2011)CrossRefGoogle Scholar
  20. 20.
    Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understanding diffusion mr imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. RadioGraphics 26, S205–S223 (2006)CrossRefGoogle Scholar
  21. 21.
    Assemlal, H.E., Tschumperlé, D., Brun, L.: Efficient and robust computation of pdf features from diffusion mr signal. Med. Image Anal. 13, 715–729 (2009)CrossRefGoogle Scholar
  22. 22.
    Özarslan, E., Koay, C.G., Shepherd, T., Blackband, S., Basser, P.J.: Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI. In: International Society for Magnetic Resonance in Medicine (ISMRM), p. 1396 (2009)Google Scholar
  23. 23.
    Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)CrossRefGoogle Scholar
  24. 24.
    Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magn. Reson. Med. 50, 955–965 (2003)CrossRefGoogle Scholar
  25. 25.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)CrossRefGoogle Scholar
  26. 26.
    Barmpoutis, A., Vemuri, B.C., Shepherd, T.M., Forder, J.R.: Tensor splines for interpolation & approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26(11), 1537–1546 (2007)CrossRefGoogle Scholar
  27. 27.
    Basser, P.J., Pajevic, S.: Spectral decomposition of a 4th-order covariance tensor: applications to diffusion tensor MRI. Signal Process. 87, 220–236 (2007)CrossRefGoogle Scholar
  28. 28.
    Schultz, T., Kindlmann, G.L.: A maximum enhancing higher-order tensor glyph. Comput. Graphics Forum 29(3), 1143–1152 (2010)CrossRefGoogle Scholar
  29. 29.
    Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440 (2005)CrossRefGoogle Scholar
  30. 30.
    Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)CrossRefGoogle Scholar
  31. 31.
    Pierpaoli, C., Jezzard, P., Basser, P., Barnett, A., Chiro, G.D.: Diffusion tensor MR imaging of human brain. Radiology 201, 637–648 (1996)CrossRefGoogle Scholar
  32. 32.
    Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG Symposium on Visualization 2004, pp. 147–154 (2004)Google Scholar
  33. 33.
    Ennis, D.B., Kindlman, G., Rodriguez, I., Helm, P.A., McVeigh, E.R.: Visualization of tensor fields using superquadric glyphs. Magn. Reson. Med. 53(1), 169–176 (2005)CrossRefGoogle Scholar
  34. 34.
    Choukri, M., Mekkaoui, C., Jackowski, M., Martuzzi, R., SINUSAS, A.J.: Supertoroid-based fusion of cardiac DT-MRI with molecular and physiological information. In: 18th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), p. 1592 (2010)Google Scholar
  35. 35.
    Schultz, T., Kindlmann, G.: Superquadric glyphs for symmetric second-order tensors. IEEE Trans. Vis. Comput. Graph. 16(6), 1595–1604 (2010)CrossRefGoogle Scholar
  36. 36.
    Westin, C., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6(2), 93–108 (2002)CrossRefGoogle Scholar
  37. 37.
    Koay, C.G., Ozarslan, E., Pierpaoli, C.: Probabilistic Identification and Estimation of Noise (PIESNO): a self-consistent approach and its applications in MRI. J. Magn. Reson. 199(1), 94–103 (2009)CrossRefGoogle Scholar
  38. 38.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoglu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  39. 39.
    Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)CrossRefGoogle Scholar
  40. 40.
    Tax, C., Vos, S., Viergever, M., Froeling, M., Leemans, A.: Transforming grids to shells and vice versa: an evaluation of interpolation methods in diffusion MRI q- and b-space. In: Proceedings on International Society for Magnetic Resonance in Medicine, vol. 22, p. 4485 (2014)Google Scholar
  41. 41.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  42. 42.
    Vaillancourt, O., Boré, A., Girard, G., Descoteaux, M.: A fiber navigator for neurosurgical planning (neuroplanningnavigator). In: IEEE Visualization, Salt Lake City, UT (2010)Google Scholar
  43. 43.
    Chamberland, M., Whittingstall, K., Fortin, D., Mathieu, D., Descoteaux, M.: Real-time multi-peak tractography for instantaneous connectivity display. Front. Neuroinformatics 8, 59 (2014)CrossRefGoogle Scholar
  44. 44.
    Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)CrossRefGoogle Scholar
  45. 45.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium on Volume Visualization, January, pp. 79–86 (1998)Google Scholar
  46. 46.
    Cullip, T.J., Neumann, U.: Accelerating volume reconstruction with 3d texture hardware. University of North Carolina at Chapel, pp. 1–6 (1994)Google Scholar
  47. 47.
    Ropinski, T., Preim, B.: Taxonomy and usage guidelines for glyph-based medical visualization. In: Proceedings of the 19th Conference on Simulation and Visualization (SimVis08), pp. 121–138 (2008)Google Scholar
  48. 48.
    Jankun-Kelly, T.J., Mehta, K.: Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1197–1204 (2006)CrossRefGoogle Scholar
  49. 49.
    Jankun-Kelly, T., Lanka, Y.S., Swan, J.E., II: An evaluation of glyph perception for real symmetric traceless tensor properties. Comput. Graphics Forum: Int. J. Eurographics Assoc. 29(3), 1133–1142 (2010) [Special Issue on EuroVis 2010]Google Scholar
  50. 50.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar
  51. 51.
    Sotiropoulos, S.N., Behrens, T.E.J., Jbabdi, S.: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI. NeuroImage 60(2), 1412–1425 (2012)CrossRefGoogle Scholar
  52. 52.
    Savadjiev, P., Campbell, J.S.W., Descoteaux, M., Deriche, R., Pike, G.B., Siddiqi, K.: Labeling of ambiguous sub-voxel fibre bundle configurations in high angular resolution diffusion MRI. NeuroImage 41(1), 58–68 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olivier Vaillancourt
    • 1
  • Maxime Chamberland
    • 1
  • Jean-Christophe Houde
    • 1
  • Maxime Descoteaux
    • 1
    Email author
  1. 1.Computer Science Department, Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke Molecular Imaging Center (CIMS)Université de SherbrookeSherbrookeCanada

Personalised recommendations