Skip to main content

Ore Polynomials in Sage

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8942)

Abstract

We present a Sage implementation of Ore algebras. The main features for the most common instances include basic arithmetic and actions; GCRD and LCLM; D-finite closure properties; natural transformations between related algebras; guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series. This paper is a tutorial on how to use the package.

Keywords

  • Differential Operator
  • Computer Algebra System
  • Closure Property
  • Fibonacci Number
  • Base Ring

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

All three authors were supported by the Austrian FWF grant Y464-N18.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   39.58
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   52.80
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramov, S.A., Le, H.Q., Li, Z.: OreTools: a computer algebra library for univariate Ore polynomial rings. Technical report CS-2003-12, University of Waterloo (2003)

    Google Scholar 

  2. Sergei, S.A., van Hoeij, M.: Integration of solutions of linear functional equations. Integr. Transforms Spec. Funct. 9, 3–12 (1999)

    Google Scholar 

  3. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)

    CrossRef  MATH  Google Scholar 

  4. Chyzak, F.: Fonctions holonomes en calcul formel. Ph.D. thesis, INRIA Rocquencourt (1998)

    Google Scholar 

  5. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 187–227 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Hebisch, W., Rubey, M.: Extended rate, more GFUN. J. Symbolic Comput. 46(8), 889–903 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Jaroschek, M.: Improved polynomial remainder sequences for Ore polynomials. J. Symbolic Comput. 58, 64–76 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Jaroschek, M., Kauers, M., Chen, S., Singer, M.F.: Desingularization explains order-degree curves for Ore operators. In: Kauers, M. (ed.) Proceedings of ISSAC’13, pp. 157–164 (2013)

    Google Scholar 

  9. Kauers, M.: Guessing handbook. Technical report 09–07, RISC-Linz (2009)

    Google Scholar 

  10. Kauers, M.: The holonomic toolkit. In: Blümlein, J., Schneider, C. (eds.) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation, pp. 119–144. Springer, Vienna (2013)

    CrossRef  Google Scholar 

  11. Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2009)

    Google Scholar 

  12. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report 10–01, RISC Report Series, University of Linz, Austria, January 2010

    Google Scholar 

  13. Li, Z.: A Subresultant theory for linear differential, linear difference, and Ore polynomials, with applications. Ph.D. thesis, RISC-Linz (1996)

    Google Scholar 

  14. Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, J. Kepler University, Linz, August 1996

    Google Scholar 

  15. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Mathe. Softw. 20(2), 163–177 (1994)

    CrossRef  MATH  Google Scholar 

  17. Stein, W.A., et al.: Sage Mathematics Software (Version 5.9). The Sage Development Team (2013). http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Kauers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kauers, M., Jaroschek, M., Johansson, F. (2015). Ore Polynomials in Sage. In: Gutierrez, J., Schicho, J., Weimann, M. (eds) Computer Algebra and Polynomials. Lecture Notes in Computer Science(), vol 8942. Springer, Cham. https://doi.org/10.1007/978-3-319-15081-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15081-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15080-2

  • Online ISBN: 978-3-319-15081-9

  • eBook Packages: Computer ScienceComputer Science (R0)