An Invitation to Ehrhart Theory: Polyhedral Geometry and its Applications in Enumerative Combinatorics

  • Felix Breuer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8942)


In this expository article we give an introduction to Ehrhart theory, i.e., the theory of integer points in polyhedra, and take a tour through its applications in enumerative combinatorics. Topics include geometric modeling in combinatorics, Ehrhart’s method for proving that a counting function is a polynomial, the connection between polyhedral cones, rational functions and quasisymmetric functions, methods for bounding coefficients, combinatorial reciprocity theorems, algorithms for counting integer points in polyhedra and computing rational function representations, as well as visualizations of the greatest common divisor and the Euclidean algorithm.


Polynomial Quasipolynomial Rational function Quasisymmetric function Partial polytopal complex Simplicial cone Fundamental parallelepiped Combinatorial reciprocity theorem Barvinok’s algorithm Euclidean algorithm Greatest common divisor Generating function Formal power series Integer linear programming 



I would like to thank Benjamin Nill, Peter Paule, Manuel Kauers, Christoph Koutschan and an anonymous referee for their helpful comments on earlier versions of this article. I would also like to thank Matthias Beck whose lectures and book [10] were my very own invitation to Ehrhart theory.


  1. 1.
    Andrews, G., Paule, P., Riese, A.: MacMahon’s partition analysis VI: a new reduction algorithm. Ann. Comb. 5(3), 251–270 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Monforte, A.A., Kauers, M.: Formal Laurent series in several variables. Expositiones Mathematicae 31(4), 350–367 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baldoni, V., Berline, N., De Loera, J.A., Köppe, M., Vergne, M.: How to integrate a polynomial over a simplex. Math. Comput. 80, 297–325 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16(4), 957–979 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barvinok, A.I.: Integer Points in Polyhedra. European Mathematical Society (2008)Google Scholar
  7. 7.
    Beck, M., Breuer, F., Godkin, L., Martin, J.L.: Enumerating colorings, tensions and flows in cell complexes. J. Comb. Theory, Ser. A 122, 82–106 (2014)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Beck, M., De Loera, J.A., Develin, M., Pfeifle, J., Stanley, R.P.: Coefficients and roots of Ehrhart polynomials. In: Barvinok, A.I. (ed.) Integer Points in Polyhedra, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, Snowbird, Utah, 2003, pp. 1–24. AMS (2005)Google Scholar
  9. 9.
    Beck, M., Haase, C., Sottile, F.: Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones. Math. Intell. 31(1), 9–17 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Springer, New York (2007)Google Scholar
  11. 11.
    Beck, M., Sanyal, R.: Combinatorial reciprocity theorems (2014, to appear).
  12. 12.
    Beck, M., Zaslavsky, T.: Inside-out polytopes. Adv. Math. 205(1), 134–162 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Beck, M., Zaslavsky, T.: The number of nowhere-zero flows on graphs and signed graphs. J. Comb. Theory, Ser. B 96(6), 901–918 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Bergeron, N., Zabrocki, M.: The Hopf algebras of symmetric functions and quasi-symmetric functions in non-commutative variables are free and co-free. J. Algebra Appl. 8(4), 581–600 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Breuer, F.: Ham sandwiches, staircases and counting polynomials. Ph.D. thesis, Freie Universität Berlin (2009)Google Scholar
  16. 16.
    Breuer, F.: Ehrhart \(f^*\)-coefficients of polytopal complexes are non-negative integers. Electron. J. Comb. 19(4), P16 (2012)MathSciNetGoogle Scholar
  17. 17.
    Breuer, F., Dall, A.: Bounds on the coefficients of tension and flow polynomials. J. Algebr. Comb. 33(3), 465–482 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Breuer, F., Dall, A., Kubitzke, M.: Hypergraph coloring complexes. Discrete Math. 312(16), 2407–2420 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Breuer, F., Eichhorn, D., Kronholm, B.: Cranks and the geometry of combinatorial witnesses for the divisibility and periodicity of the restricted partition function (2014, in preparation)Google Scholar
  20. 20.
    Breuer, F., von Heymann, F.: Staircases in \(\mathbb{Z}^2\). Integers 10(6), 807–847 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Breuer, F., Klivans, C.J.: Scheduling problems (2014, submitted). arXiv:1401.2978v1
  22. 22.
    Breuer, F., Sanyal, R.: Ehrhart theory, modular flow reciprocity, and the Tutte polynomial. Mathematische Zeitschrift 270(1), 1–18 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Breuer, F., Zafeirakopoulos, Z.: Polyhedral omega: a new algorithm for solving linear diophantine systems (2014, in preparation)Google Scholar
  24. 24.
    Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l’École Normale Supérieure 21(4), 653–663 (1988)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Bruns, W., Ichim, B., Söger, C.: The power of pyramid decomposition in normaliz (2012). arXiv:1206.1916v1
  26. 26.
    Calkin, N., Wilf, H.S.: Recounting the rationals. Am. Math. Mon. 107(4), 360–363 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Chari, M.K.: Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Am. Math. Soc. 349(10), 3925–3943 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    De Loera, J.A., Hemmecke, R., Köppe, M.: Pareto optima of multicriteria integer linear programs. INFORMS J. Comput. 21(1), 39–48 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and geometric ideas in the theory of discrete optimization, vol. 14. SIAM (2012)Google Scholar
  30. 30.
    De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004)CrossRefGoogle Scholar
  31. 31.
    Ehrhart, E.: Sur les polyèdres rationnels homothétiques à \(n\) dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  33. 33.
    Fukuda, K., Rosta, V.: Combinatorial face enumeration in convex polytopes. Comput. Geom. 4(4), 191–198 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1994)zbMATHGoogle Scholar
  35. 35.
    Greene, C.: Acyclic orientations (notes). In: Aigner, M. (ed.) Higher Combinatorics, pp. 65–68. Reidel, Dordrecht (1977)Google Scholar
  36. 36.
    Haase, C., Schicho, J.: Lattice polygons and the number 2i+7. Am. Math. Mon. 116(2), 151–165 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Henk, M., Tagami, M.: Lower bounds on the coefficients of Ehrhart polynomials. Eur. J. Comb. 30(1), 70–83 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Hersh, P., Swartz, E.: Coloring complexes and arrangements. J. Algebr. Comb. 27(2), 205–214 (2007)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Jochemko, K., Sanyal, R.: Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings, pp. 1–16 (2013). arXiv:1206.4066v2
  40. 40.
    Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions with a primal Barvinok algorithm. Electron. J. Comb. 15, R16 (2008)Google Scholar
  41. 41.
    Lawrence, J.: Valuations and polarity. Discrete Comput. Geom. 3(1), 307–324 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Macdonald, I.G.: Polynomials associated to finite cell complexes. J. London Math. Soc. 2(4), 181–192 (1971)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Pfeifle, J., Rambau, J.: Computing triangulations using oriented matroids. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 49–75. Springer, Berlin (2003)CrossRefGoogle Scholar
  45. 45.
    De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Springer, Berlin (2010)CrossRefGoogle Scholar
  46. 46.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar
  47. 47.
    Stanley, R.P.: Acyclic orientations of graphs. Discrete Math. 5, 171–178 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Stanley, R.P.: Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  51. 51.
    Stapledon, A.: Inequalities and Ehrhart \(\delta \)-vectors. Trans. Am. Math. Soc. 361, 5615–5626 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Swartz, E.: g-Elements, finite buildings and higher Cohen-Macaulay connectivity. J. Combin. Theory, Ser. A 113, 1305–1320 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Varchenko, A.N.: Combinatorics and topology of the disposition of affine hyperplanes in real space. Funct. Anal. Appl. 21(1), 9–19 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Verdoolaege, S., Woods, K.: Counting with rational generating functions. J. Symb. Comput. 43(2), 75–91 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48(1), 37–66 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Woods, K.: Presburger arithmetic, rational generating functions, and quasi-polynomials. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 410–421. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  57. 57.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations