Skip to main content

Equational Abstractions in Rewriting Logic and Maude

  • 342 Accesses

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 8941)

Abstract

Maude is a high-level language and high-performance system supporting both equational and rewriting computation for a wide range of applications. Maude also provides a model checker for linear temporal logic. The model-checking procedure can be used to prove properties when the set of states reachable from an initial state in a system is finite; when this is not the case, it may be possible to use an equational abstraction technique for reducing the size of the state space. Abstraction reduces the problem of whether an infinite state system satisfies a temporal logic property to model checking that property on a finite state abstract version of the original infinite system. The most common abstractions are quotients of the original system. We present a simple method for defining quotient abstractions by means of equations identifying states. Our method yields the minimal quotient system together with a set of proof obligations that guarantee its executability, which can be discharged with tools such as those available in the Maude formal environment. The proposed method will be illustrated by means of detailed examples.

Keywords

  • Maude
  • Rewriting logic
  • Model checking
  • Abstraction
  • Formal environment

Research supported by MINECO Spanish projects StrongSoft (TIN2012–39391–C04–04) and TIN2011–23795, and Comunidad de Madrid program N-GREENS Software (S2013/ICE-2731).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15075-8_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15075-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)

    Google Scholar 

  2. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. Journal of Logic and Algebraic Programming 81(7–8), 816–850 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude Formal Environment. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  4. Giesl, J., et al.: Proving termination of programs automatically with \({\sf AProVE}\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  5. Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. Theoretical Computer Science 403(2–3), 239–264 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Meseguer, J., Palomino, M., Martí-Oliet, N.: Algebraic simulations. Journal of Logic and Algebraic Programming 79(2), 103–143 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narciso Martí-Oliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martí-Oliet, N., Durán, F., Verdejo, A. (2015). Equational Abstractions in Rewriting Logic and Maude. In: Braga, C., Martí-Oliet, N. (eds) Formal Methods: Foundations and Applications. SBMF 2014. Lecture Notes in Computer Science(), vol 8941. Springer, Cham. https://doi.org/10.1007/978-3-319-15075-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15075-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15074-1

  • Online ISBN: 978-3-319-15075-8

  • eBook Packages: Computer ScienceComputer Science (R0)