Skip to main content

Induced Pluripotent Stem Cells as a Cell-Based Therapeutic in Stroke

  • Chapter
  • First Online:
Cell Therapy for Brain Injury

Abstract

Induced pluripotent stem cells (iPSC) represent a major breakthrough in stem cell research, cell therapy, and regenerative medicine. iPSC have immediate applications in modeling diseases, such as amyotrophic lateral sclerosis, and testing drugs on differentiated human cells in vitro. There is also a growing body of evidence that demonstrates efficacy of iPSC-derived neural progenitor cells in preclinical stroke models in the rodent. Unlike other types of cells such as mesenchymal stem cells that work by immunomodulatory and trophic effects, iPSC work by both “cell replacement” and trophic effects on surrounding tissue. The future clinical use of iPSC-based therapy in regenerative medicine and specifically stroke is still years away and will require overcoming some remaining hurdles. These include the need for safe, nongenomic integrative reprogramming methods to remove the risk of tumor development, choosing the optimal iPSC-derived neural progenitors to transplant, determining the ideal routes, timing, and doses of cell transplantation, and developing good manufacturing practices (GMP) to safely expand and maintain the cells for clinical use. While both autologous and allogeneic transplantations are options, feasibility, cost, and scalability will make allogeneic transplantation the more likely approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  3. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  4. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.

    CAS  PubMed  Google Scholar 

  5. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 1962;4:256–73.

    Article  CAS  PubMed  Google Scholar 

  6. Kim JB, et al. Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc. 2009;4(10):1464–70.

    Article  CAS  PubMed  Google Scholar 

  7. Han DW, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  8. Sterneckert J, Hoing S, Scholer HR. Concise review: Oct4 and more: the reprogramming expressway. Stem Cells. 2012;30(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  9. Dimos JT, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21.

    Article  CAS  PubMed  Google Scholar 

  10. Qiang L, Fujita R, Abeliovich A. Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders. Neuron. 2013;78(6):957–69.

    Article  CAS  PubMed  Google Scholar 

  11. Schondorf DC, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.

    Article  PubMed  Google Scholar 

  12. Juopperi TA, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain. 2012;5:17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hanna J, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3.

    Article  CAS  PubMed  Google Scholar 

  14. Xu D, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A. 2009;106(3):808–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wernig M, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(15):5856–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Petit GH, Olsson TT, Brundin P. The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol Appl Neurobiol. 2014;40(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  17. Kawai H, et al. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab. 2010;30(8):1487–93.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Yamashita T, et al. Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant. 2011;20(6):883–91.

    Article  PubMed  Google Scholar 

  19. Jiang M, et al. Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem. 2011;354(1–2):67–75.

    Article  CAS  PubMed  Google Scholar 

  20. Chen SJ, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19(11):1757–67.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson TJ, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120(5):408–16.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chang DJ, et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22(8):1427–40.

    Article  PubMed  Google Scholar 

  23. Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 2006;26(12):1465–78.

    Article  PubMed  Google Scholar 

  24. Bath PM, Macleod MR, Green AR. Emulating multicentre clinical stroke trials: a new paradigm for studying novel interventions in experimental models of stroke. Int J Stroke. 2009;4(6):471–9.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen MB, et al. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis. 2013;22(4):304–8.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Seminatore C, et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem-cell-derived neural progenitors. Stroke. 2010;41(1):153–9.

    Article  PubMed  Google Scholar 

  27. Oki K, et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012;30(6):1120–33.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis. 2010;6(2):107–14.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mohamad O, et al. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS ONE. 2013;8(5):e64160.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Liu SP, et al. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev. 2014;23(4):421–33.

    Article  CAS  PubMed  Google Scholar 

  31. Tatarishvili J, et al. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor Neurol Neurosci. 2014;32(4):547–58.

    Google Scholar 

  32. Darsalia V, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab. 2011;31(1):235–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Durruthy-Durruthy J, et al. Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions. PLoS ONE. 2014;9(4):e94231.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol. 2002;20(11):1111–7.

    Article  CAS  PubMed  Google Scholar 

  35. Jin K, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30(3):534–44.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zhong J, et al. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair. 2010;24(7):636–44.

    Article  PubMed  Google Scholar 

  37. Hoban DB, et al. The reduction in immunogenicity of neurotrophin overexpressing stem cells after intra-striatal transplantation by encapsulation in an in situ gelling collagen hydrogel. Biomaterials. 2013;34(37):9420–9.

    Article  CAS  PubMed  Google Scholar 

  38. Park JS, et al. Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells. Biomaterials. 2010;31(28):7275–87.

    Article  CAS  PubMed  Google Scholar 

  39. Landis SC, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fisher M, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2198–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27(11):2667–74.

    Article  CAS  PubMed  Google Scholar 

  43. Ban H, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108(34):14234–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Woltjen K, et al. Transgene-free production of pluripotent stem cells using piggyBac transposons. Methods Mol Biol. 2011;767:87–103.

    Article  CAS  PubMed  Google Scholar 

  45. Woltjen K, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Warren L, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kim D, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhou H, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–4.

    Article  CAS  PubMed  Google Scholar 

  49. Hou P, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.

    Article  CAS  PubMed  Google Scholar 

  50. Okita K, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  51. Goh PA, et al. A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS ONE. 2013;8(11):e81622.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Okita K, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–12.

    Article  CAS  PubMed  Google Scholar 

  53. Bock C, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):439–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Guha P, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12(4):407–12.

    Article  CAS  PubMed  Google Scholar 

  55. Turner M, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13(4):382–4.

    Article  CAS  PubMed  Google Scholar 

  56. Gourraud PA, et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  57. Tornero D, et al. Human induced pluripotent stem-cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain. 2013;136(12):3561–77.

    Article  PubMed  Google Scholar 

  58. Yuan T, et al. Human induced pluripotent stem-cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kaji K, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Hess M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hess, D., Fakhri, N., West, F. (2015). Induced Pluripotent Stem Cells as a Cell-Based Therapeutic in Stroke. In: Hess, D. (eds) Cell Therapy for Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-15063-5_9

Download citation

Publish with us

Policies and ethics