Skip to main content

A Stem-Cell-Derived Cell-Free Therapy for Stroke: Moving Conditioned Medium into Clinical Trial

  • Chapter
  • First Online:
Cell Therapy for Brain Injury

Abstract

Stem cells have demonstrated promise in early clinical trials evaluating safety, feasibility, and effectiveness for treating stroke. It is becoming increasingly clear that the mechanism of action by which multipotent adult stem cells address the complex pathophysiology of stroke is not predominantly their ability to differentiate into cell types that replace tissues lost to injury, but occurs through factors secreted by these cells which promote survival and repair. The paracrine effects of mesenchymal stem cells (MSC) in particular include anti-apoptosis, angiogenesis, protection from glutamate excitotoxic and ischemic insults, neurogenesis, and synaptogenesis. Preclinical studies in animal models of ischemic stroke demonstrate the robust effect of MSC, leading to reduced infarct dimensions and enhanced functional recovery. Recognition of the critical function of MSC paracrine factors has prompted investigation in many different disease models of conditioned medium (CM) obtained from culturing MSC. Seminal studies in rodent stroke models have validated the therapeutic potential of adipose stem/stromal cell (ASC) as well as MSC-CM, demonstrating a similar effect as with cell delivery. These results have led to the concept of producing clinically compliant MSC-CM for testing in human trials. The regulatory pathway for gaining approval to commence clinical testing will require implementation of robust manufacturing processes and quality control systems to develop reproducible final products. In addition, selection of reagents and materials with low risks for introducing toxic substances or adventitious agents is mandatory. Fortunately, clear guidelines exist for developing a suitable manufacturing process, although these guidelines were developed for manufacturing therapeutic cell types and do not pertain in every circumstance to a complex mixture composed of their secretions. An example of a program developing an investigational drug based on MSC-CM and strategies for mitigating risks of encountering regulatory pitfalls is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1–2):49–57.

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.

    Google Scholar 

  5. Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, et al. Therapeutic effects of human adipose stem-cell-conditioned medium on stroke. J Neurosci Res. 2012;90(9):1794–802.

    Article  CAS  PubMed  Google Scholar 

  6. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.

    Article  PubMed  Google Scholar 

  7. Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M, et al. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res. 2012;1461:87–95.

    Article  CAS  PubMed  Google Scholar 

  8. Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011;13(6):675–85.

    Article  CAS  PubMed  Google Scholar 

  9. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183(2):355–66.

    Article  CAS  PubMed  Google Scholar 

  10. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;27(1):6–13.

    Article  PubMed  Google Scholar 

  11. Yang YC, Liu BS, Shen CC, Lin CH, Chiao MT, Cheng HC. Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neurovasc Res. 2011;8(1):1–13.

    Article  PubMed  Google Scholar 

  12. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  13. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Res. 2008;103(11):1204–19.

    Google Scholar 

  14. Ratajczak MZ, Kucia M, Jadczyk T, Greco NJ, Wojakowski W, Tendera M, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem-cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012;26(6):1166–73.

    Article  CAS  PubMed  Google Scholar 

  15. Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells. 2013;31(10):2042–6.

    Article  CAS  PubMed  Google Scholar 

  16. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9.

    Article  PubMed  Google Scholar 

  18. Kang SK, Jun ES, Bae YC, Jung JS. Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res Dev Brain Res. 2003;145(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  19. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, et al. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38(7):2150–6.

    Article  PubMed  Google Scholar 

  20. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 2007;25(11):2896–902.

    Article  PubMed  Google Scholar 

  21. Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem. 2012;113(5):1460–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190–9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Danchuk S, Ylostalo JH, Hossain F, Sorge R, Ramsey A, Bonvillain RW, et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-alpha-induced protein 6. Stem Cell Res Ther. 2011;2(3):27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32(7):1310–6.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cramer SC. An overview of therapies to promote repair of the brain after stroke. Head Neck. 2011;33 Suppl 1:S5–7.

    Article  PubMed  Google Scholar 

  28. Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Curr Opin Neurol. 2008;21(1):76–82.

    Article  PubMed  Google Scholar 

  29. Li Y, Chopp M. Temporal profile of nestin expression after focal cerebral ischemia in adult rat. Brain Res. 1999;838(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai MJ, Tsai SK, Hu BR, Liou DY, Huang SL, Huang MC, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci. 2014;21:5.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3):177–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Leu S, Lin YC, Yuen CM, Yen CH, Kao YH, Sun CK, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med. 2010;8:63.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Li D, Fang Y, Wang P, Shan W, Zuo Z, Xie L. Autologous transplantation of adipose-derived mesenchymal stem cells attenuates cerebral ischemia and reperfusion injury through suppressing apoptosis and inducible nitric oxide synthase. Int J Mol Med. 2012;29(5):848–54.

    CAS  PubMed  Google Scholar 

  34. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PloS One. 2010;5(9):e12779.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Voulgari-Kokota A, Fairless R, Karamita M, Kyrargyri V, Tseveleki V, Evangelidou M, et al. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol. 2012;236(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  37. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009;40(12):e647–56.

    Article  CAS  PubMed  Google Scholar 

  38. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther. 2014;22(4):862–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, et al. IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells. 2009;27(2):478–88.

    Article  CAS  PubMed  Google Scholar 

  41. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93(2):662–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu N, Zhang Y, Fan L, Yuan M, Du H, Cheng R, et al. Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats. J Transl Med. 2011;9:105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  46. Song M, Mohamad O, Gu X, Wei L, Yu SP. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2013;22(11):2001–15.

    Article  PubMed  Google Scholar 

  47. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 2004;1030(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  49. Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH, et al. Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett. 2009;462(1):76–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 2002;5(5):405–14.

    CAS  PubMed  Google Scholar 

  51. Kawano T, Morioka M, Yano S, Hamada J, Ushio Y, Miyamoto E, et al. Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab. 2002;22(8):926–34.

    Article  CAS  PubMed  Google Scholar 

  52. Yano S, Morioka M, Fukunaga K, Kawano T, Hara T, Kai Y, et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2001;21(4):351–60.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10(6):702–11.

    Article  CAS  PubMed  Google Scholar 

  54. Lu S, Lu C, Han Q, Li J, Du Z, Liao L, et al. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology. 2011;279(1–3):189–95.

    Article  CAS  PubMed  Google Scholar 

  55. Alder J, Kramer BC, Hoskin C, Thakker-Varia S. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation. Dev Nerobiol. 2012;72(6):755–65.

    Article  CAS  Google Scholar 

  56. Tan B, Luan Z, Wei X, He Y, Wei G, Johnstone BH, et al. AMP-activated kinase mediates adipose stem-cell-stimulated neuritogenesis of PC12 cells. Neuroscience. 2011;181:40–7.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao L, Wei X, Ma Z, Feng D, Tu P, Johnstone BH, et al. Adipose stromal cells-conditional medium protected glutamate-induced CGNs neuronal death by BDNF. Neurosci Lett. 2009;452(3):238–40.

    Article  CAS  PubMed  Google Scholar 

  58. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol. 2009;182(12):8005–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Giri S, Khan M, Nath N, Singh I, Singh AK. The role of AMPK in psychosine mediated effects on oligodendrocytes and astrocytes: implication for Krabbe disease. J Neurochem. 2008;105(5):1820–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Williams T, Courchet J, Viollet B, Brenman JE, Polleux F. AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci U S A. 2011;108(14):5849–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, et al. Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem. 2010;285(14):10638–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–85.

    Article  CAS  PubMed  Google Scholar 

  63. Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells. 2007;25(12):3234–43.

    Article  CAS  PubMed  Google Scholar 

  64. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14(6):840–50.

    Article  CAS  PubMed  Google Scholar 

  65. Atouf F, Provost NM, Rosenthal FM. Standards for ancillary materials used in cell-and tissue-based therapies. BioProcess Int. 2013;11:8.

    Google Scholar 

  66. United States Food and Drug Administration: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products. Final rule. Fed Regist. 2004;69(101):29785–834.

    Google Scholar 

  67. Unites States Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products. 2008.http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/ Guidances/Xenotransplantation/ucm074131.htm. Accessed 21 Feb 2015.

  68. Unites States Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry: source animal, product, preclinical, and clinical issues concerning the use of Xenotransplantation products in humans. 2003. http://www.fda.gov/BiologicsBlood-Vaccines/GuidanceComplianceRegulatoryInformation/Guidances/Xenotransplantation/ ucm074354.htm. Accessed 21 Feb 2015.

  69. International Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Q5D: derivation and characterisation of cell substrates used for production of biotechnological/biological products. 1997. http://www.ich.org/products/guidelines/quality/quality-single/article/derivation-and-characterisation-of-cell-substratesused-for-production-of-biotechnologicalbiologica.html. Accessed 21 Feb 2015.

  70. Service UPH. PHS guideline on infectious disease issues in xenotransplantation. MMWR Recommendations and Reports. 2001;50:1–46.

    Google Scholar 

  71. Center of Biological Research and Evaluation: Department of Health and Human Services. Points to consider in the characterization of cell lines used to produce biologicals. 1993.www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/UCM162863.pdf. Accessed 21 Feb 2015.

  72. Unites States Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for FDA reviewers and sponsors: content and review of chemistry, manufacturing, and control (CMC) information for human somatic cell therapy investigational new drug applications (INDs). 2008.www.fdagov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Xenotransplantation/ucm074131htm Accessed 21 Feb 2015.

  73. Jung S, Panchalingam KM, Rosenberg L, Behie LA. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 2012;2012:123030.

    Google Scholar 

  74. Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, Behie LA. Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem. 2012;59(2):106–20.

    Article  CAS  PubMed  Google Scholar 

  75. Fink DW, Bauer SR. stem-cell-based therapies: food and drug administration product and pre-clinical regulatory considerationsed. In: Stem cell anthology: from stem cell biology, tissue engineering, cloning, regenerative medicine and biology.London: Academic; 2009.p. 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Johnstone PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnstone, B., March, K. (2015). A Stem-Cell-Derived Cell-Free Therapy for Stroke: Moving Conditioned Medium into Clinical Trial. In: Hess, D. (eds) Cell Therapy for Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-15063-5_14

Download citation

Publish with us

Policies and ethics