Skip to main content

Speciation: Expanding the Role of Biogeography and Niche Breadth in Macroevolutionary Theory

  • Chapter
  • First Online:
Macroevolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 2))

Abstract

Understanding the processes that control speciation is critical to building a comprehensive macroevolutionary synthesis. A variety of theoretical constructs have been proposed to explain various differential speciation patterns observed in the fossil record, such as higher rates of speciation among specialist versus generalist taxa. Most of these explanations, however, rely on only one or two explanatory variables and may be overly simplistic. Developing a more complete understanding of speciation processes requires a broader synthesis of multiple explanatory factors including the role of external factors such as climatic and tectonics, impact of ecosystem-level processes, relative niche breadth, and relative stability of species’ niches during environmental change (biotic and abiotic). This chapter explores the relationship between biogeography, ecological niches, and speciation in a series of case studies focused on Paleozoic (Late Ordovician and Late Devonian) shallow marine brachiopods and bivalves and Cenozoic (Neogene) horses of North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmon WD (2013) Species, speciation and palaeontology up to the modern synthesis: persistent themes and unanswered questions. Palaeontology 56(6):1199–1223. doi:10.1111/pala.12054

    Article  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30(4):522–542

    Article  Google Scholar 

  • Botts EA, Erasmus BFN, Alexander GJ, Lawlor J (2013) Small range size and narrow niche breadth predict range contractions in South African frogs. Glob Ecol Biogeogr 22(5):567–576. doi:10.1111/geb.12027

    Article  Google Scholar 

  • Brame H-MR, Stigall AL (2014) Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology 40(1):70–90 doi:10.1666/13035

    Article  Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623

    Article  Google Scholar 

  • Congreve CR, Lieberman BS (2008) Phylogenetic and biogeographic analysis of Ordovician homalonotid trilobites. Open Paleontol J 1:24–32

    Article  Google Scholar 

  • Congreve CR, Lieberman BS (2010) Phylogenetic and biogeographic analysis of deiphonine trilobites. J Paleontol 84(1):128–136

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886. doi:10.1080/10635150701701083

    Article  PubMed  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Dudei NL, Stigall AL (2010) Using ecological niche modeling to assess biogeographic and niche response of brachiopod species to the Richmondian invasion (Late Ordovician) in the Cincinnati Arch. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):28–43. doi:10.1016/j.palaeo.2010.06.012

    Article  Google Scholar 

  • Eldredge N (1996) Hierarchies in macroevolution. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. Chicago University Press, Chicago, pp 42–61

    Google Scholar 

  • Eldredge N (2003) The sloshing bucket: how the physical realm controls evolution. In: Crutchfield J, Schuster P (eds) Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function: exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, New York, pp 3–32

    Google Scholar 

  • Eldredge N (2007) Hierarchies and the sloshing bucket: toward the unification of evolutionary biology. Evol Educ Outreach 1(1):10–15. doi:10.1007/s12052-007-0007-6

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper, and Co., San Fransisco, pp 82–115

    Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller WI (2005) The dynamics of evolutionary stasis. Paleobiology 31(2):133–145

    Article  Google Scholar 

  • Eronen JT, Evans AR, Fortelius M, Jernvall J (2010) The impact of regional climate on the evolution of mammals: a case study using fossil horses. Evolution 64(2):398–408

    Article  PubMed  Google Scholar 

  • Fernández MH, Vrba ES (2005) Body size, biomic specialization and range size of African large mammals. J Biogeogr 32(7):1243–1256

    Article  Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fennica 180:1–76

    Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2):115–151

    Google Scholar 

  • Holland SM (1997) Using time/environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. In: Brett CE, Baird GC (eds) Paleontological event horizons: ecological and evolutionary implications. Columbia University Press, New York, pp 309–334

    Google Scholar 

  • Holland SM, Patzkowsky ME (1996) Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the Eastern United States. Geol Soc Am Spec Pap 306:117–129

    Google Scholar 

  • Holland SM, Patzkowsky ME (2007) Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian series (Upper Ordovician), Cincinnati, Ohio Region. U.S. Palaios 22(4):392–407. doi:10.2110/palo.2006.p06-066r

    Article  Google Scholar 

  • Hulbert RC Jr (1993) Taxonomic evolution in North American neogene horses (subfamily Equinae): the rise and fall of and adaptive radiation. Paleobiology 19(2):216–234

    Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Article  Google Scholar 

  • Jackson JBC (1974) Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Am Nat 108:541–560

    Article  Google Scholar 

  • Kammer TW, Baumiller TK, Ausich WI (1997) Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25(3):219–222

    Article  Google Scholar 

  • Levin LA (2003) Oxygen minimum zone bethos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45

    Google Scholar 

  • Lieberman BS (1997) Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology 25(11):1039–1042

    Article  Google Scholar 

  • Lieberman BS (2000) Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Top Geobiol 1:1–208

    Google Scholar 

  • Lieberman BS (2003) Biogeography of the Trilobita during the Cambrian radiation; deducing geological processes from Trilobite evolution. In: Lane PD, Siveter DJ, Fortey RA (eds) Trilobites and their relatives, vol 70. Special Papers in Palaeontology, pp 59–72

    Google Scholar 

  • Lieberman BS (2012) Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evol Biol 39(2):181–191

    Article  Google Scholar 

  • Lieberman BS, Eldredge N (1996) Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology, pp 66–79

    Google Scholar 

  • Lockwood J, Hoopes M, Marchetti M (2009) Invasion ecology. Wiley, New York

    Google Scholar 

  • MacFadden BJ (1984) Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the new world. Bull Am Museum Nat Hist 179:1–195

    Google Scholar 

  • Maguire KC, Stigall AL (2008) Paleobiogeography of Miocene equinae of North America: a phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeogr Palaeoclimatol Palaeoecol 267(3–4):175–184. doi:10.1016/j.palaeo.2008.06.014

    Article  Google Scholar 

  • Maguire KC, Stigall AL (2009) Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene equinae in the great plains. Paleobiology 35(4):587–611doi:10.1666/0094-8373-35.4.587

    Article  Google Scholar 

  • Malizia RW, Stigall AL (2011) Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian invasion. Palaeogeogr Palaeoclimatol Palaeoecol 311(3–4):154–170. doi:10.1016/j.palaeo.2011.08.017

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  • McGhee GR (1996) The Late Devonian mass extinctions: the Frasnian/Famennian crisis. Columbia University Press, New York

    Google Scholar 

  • McGhee GR (2013) The legacy of the Devonian extinctions: when the invasion of land failed. Columbia University Press, New York

    Google Scholar 

  • McGhee GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270. doi:10.1016/j.palaeo.2012.12.019

    Article  Google Scholar 

  • McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol 211(3):289–297

    Article  Google Scholar 

  • Meyer DL, Davis RA (2009) A sea without fish: life in the Ordovician Sea of the Cincinnati Region. Indiana University Press, Bloomington

    Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Patzkowsky ME, Holland SM (2007) Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33(2):295–309

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Pievani T, Serrelli E (2013) Bucket thinking: the future framework for evolutionary explanation. Contrastes Revista internacional de filosofia - Suplementos 18:389–405

    Google Scholar 

  • Prado JL, Alberdi MT (1996) A cladistic analysis of the horses of the tribe Equini. Palaeontology 39(3):663–680

    Google Scholar 

  • Rode AL (2004) Phylogenetic revision of Leptodesma (Leiopteria) (Devonian: Bivalvia). Postilla 229:1–28

    Google Scholar 

  • Rode AL, Lieberman BS (2002) Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. J Paleontol 76(2):271–286

    Article  Google Scholar 

  • Rode AL, Lieberman BS (2004) Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr Palaeoclimatol Palaeoecol 211(3–4):345–359. doi:10.1016/j.palaeo.2004.05.013

    Article  Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci US A 108(14):5708–5711

    Article  CAS  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution, vol 15. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1951) Horses: The story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New York

    Google Scholar 

  • Stanley SM (1990) The general correlation between rate of specation and rate of extinction: fortuitious causal linkages. In: Ross RM, Allmon WD (eds) Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago, pp 103–127

    Google Scholar 

  • Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86

    Article  Google Scholar 

  • Stigall AL (2008) Tracking species in space and time: assessing the relationships between paleobiogeography, paleoecology, and macroevolution. Paleontol Soc Pap 14:139–154 doi:10.1111/pala.12003

    Google Scholar 

  • Stigall AL (2010a) Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS One 5(12):e15584. doi:10.1371/journal.pone.0015584.g001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stigall AL (2010b) Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian invasion in the type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontol Electronica 13(1):5A–19

    Google Scholar 

  • Stigall AL (2011) Application of niche modelling to analyse biogeographic patterns in Palaeozoic brachiopods: evaluating niche stability in deep time. Memoirs Assoc Australas Palaeontologists 41:229–255

    Google Scholar 

  • Stigall AL (2012a) Invasive species and evolution. Evol Educ Outreach 5(4):526–533. doi:10.1007/s12052-012-0410-5

  • Stigall AL (2012b) Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22(1):4–9. doi:10.1130/g128a.1

    Article  Google Scholar 

  • Stigall AL (2012c) Using ecological niche modelling to evaluate niche stability in deep time. J Biogeogr 39(4):772–781. doi:10.1111/j.1365-2699.2011.02651.x

    Article  Google Scholar 

  • Stigall AL (2013) Analysing links between biogeography, niche stability and speciation: the impact of complex feedbacks on macroevolutionary patterns. Palaeontology 56(6):1225–1238. doi:10.1111/pala.12003

    Article  Google Scholar 

  • Stigall AL (2014) When and how do species achieve niche stability over long time scales? Ecography 37:1123−1132. doi:10.1111/ecog.00719

  • Stigall AL, Brame H-MR (2014) Relating environmental change and species stability in Late Ordovician seas. GFF 136(1):249–253. doi:10.1080/11035897.2013.852619

    Article  Google Scholar 

  • Stigall Rode AL (2005) Systematic revision of the Middle and Late Devonian brachiopods Schizophoria (Schizophoria) and ‘Schuchertella’ from North America. J Syst Paleontol 3(2):133–167. doi:10.1017/s1477201905001537

    Article  Google Scholar 

  • Strömberg CA (2006) Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32(2):236–258

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14(4):347–357. doi:10.1111/j.1466-822X.2005.00162.x

    Article  Google Scholar 

  • Tyler CL, Leighton LR (2011) Detecting competition in the fossil record: support for character displacement among Ordovician brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 307(1–4):205–217. doi:10.1016/j.palaeo.2011.05.020

    Article  Google Scholar 

  • Vrba ES (1984) What is species selection? Syst Zool 33(3):318–328

    Article  Google Scholar 

  • Vrba ES (1987) Ecology in relation to speciation rates: some case histories of miocene-recent mammal clades. Evol Ecol 1(4):283–300

    Article  Google Scholar 

  • Walls BJ, Stigall AL (2011) Analyzing niche stability and biogeography of Late Ordovician brachiopod species using ecological niche modeling. Palaeogeogr Palaeoclimatol Palaeoecol 299(1–2):15–29. doi:10.1016/j.palaeo.2010.10.024

    Article  Google Scholar 

  • Walls BJ, Stigall AL (2012) A field-based analysis of the accuracy of niche models applied to the fossil record. Paleontol Contrib 6:1–12

    Google Scholar 

  • Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:19–26

    Article  Google Scholar 

  • Wiley EO, Mayden RL (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals Mo Bot Gardens 72:596–635

    Article  Google Scholar 

  • Wright DF, Stigall AL (2013a) Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLoS One 8(7):e68353. doi:10.1371/journal.pone.0068353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright DF, Stigall AL (2013b) Phylogenetic revision of the Late Ordovician orthid brachiopod genera Plaesiomys and Hebertella from North America. J Paleontol 87(6):1107–1128

    Article  Google Scholar 

  • Wright DF, Stigall AL (2014) Species-level phylogenetic revision of the Ordovician orthide brachiopod Glyptorthis from North America. J Syst Palaeontol 12:893−906. doi:10.1080/14772019.2013.839584

Download references

Acknowledgements

Thanks to Emanuele Serrelli for constructive comments on an earlier version of this paper and to the editors for the invitation to submit to this volume. Many students, particularly Hannah Brame, Nicole Dudei, Kaitlin Clare Maguire, Richard Malizia, Robert Swisher, Bradley Walls, and Davey Wright contributed to the development of the datasets described in the case studies. This research was supported by NSF EAR-0922067 and is a contribution to International Geoscience Programme (IGCP) 591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alycia L. Stigall .

Editor information

Editors and Affiliations

Appendix

Appendix

Biofacies: A body of sediment characterized by a particular suite of fossils

Chronostratigraphy: Correlation of rock units based on intervals of equivalent time

Depositional or stratigraphic sequence: A cohesive cycle of sedimentary deposition; including a cycle from low sea level (lowstand systems tract), to rising sea level (transgressive systems tract), to high sea level (highstand systems tract), to falling sea level (falling stage systems tract). Depositional sequences are separated by unconformities (often erosional surfaces) or correlative conformities.

Ecological niche modeling (ENM): A computational method for estimating the boundaries of a species’ ecological niche based on the correspondence of a set of known species occurrence points with a series of environmental variables.

Gradient ecology: An empirical analytical method used to relate abundances of species in a community to environmental gradients by ordination techniques

Hyspodonty: Development of high-crowned teeth with enamel that extends beyond the gum line. This type of dentition provides extra tooth material for extensive wear of siliceous grasses.

Lithostratigraphy: Correlation of rock units based on intervals of similar rock properties

Sequence stratigraphy: Correlation of rock units based on equivalent cycles of sedimentary deposition, i.e., depositional sequences.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stigall, A.L. (2015). Speciation: Expanding the Role of Biogeography and Niche Breadth in Macroevolutionary Theory. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_9

Download citation

Publish with us

Policies and ethics