Skip to main content

Using Microevolution to Explain the Macroevolutionary Observations for the Evolution of Sex

Part of the Interdisciplinary Evolution Research book series (IDER,volume 2)

Abstract

Macroevolution deals with large-scale and complex changes such as the rise of species, mass extinctions, and evolutionary trends. Microevolution describes evolutionary change within a species with changes in allele or genotype frequencies over short time periods. The separation of the two processes is somewhat arbitrary however, as macroevolution is the accumulation of a number of microevolutionary changes leading over time to large-scale changes. As a consequence, understanding macroevolution requires understanding microevolutionary processes. In this chapter we discuss this link between macro- and micro-evolution using the example of the evolution of sexual reproduction. Explaining the evolution of sexual reproduction is one of the most puzzling problems in evolutionary biology and despite ongoing research a general explanation for the evolution and maintenance of sex has not yet been widely confirmed. Sexual reproduction has been suggested to have evolved only once from asexual reproduction during the early stages of the eukaryote evolution. Today, we find that almost all animals and plants reproduce sexually rather than asexually, suggesting that sex is advantageous. There are, however, exemptions from the macroevolutionary observation of the ubiquity of sexual reproduction: asexual taxa are found across almost the whole phylogenetic tree in a twig-like pattern, and these asexual taxa are found in habitats where related sexual taxa are often absent. The evolution of sex, with all its superlatives such as ‘the queen of evolutionary problems’ and the ‘evolutionary scandals’ of the ancient asexuals, is probably one of the fields in evolutionary biology, where already early on macroevolutionary patterns were directly related to microevolutionary processes. Examples of the literature are reviewed here with an emphasis on the link between macro- and microevolution.

Keywords

  • Evolution of sex
  • Geographic parthenogenesis
  • Phylogenetic distribution
  • Origin of sexual reproduction
  • Maintenance of sexual reproduction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abugov R (1986) Is there a cost for meiosis in life-history? J Theor Biol 116:613–623

    Google Scholar 

  • Agrawal AF (2006) Evolution of sex: why do organisms shuffle their genotypes? Curr Biol 16:R696–R704

    PubMed  CAS  Google Scholar 

  • Agrawal AF (2009) Spatial heterogeneity and the evolution of sex in diploids. Am Nat 174:S54–S70

    PubMed  Google Scholar 

  • Agren J Ericson L (1996) Population structure and morph-specific fitness differences in tristylous Lythrum salicaria. Evolution 50(1):126–139

    Google Scholar 

  • Allen DE, Lynch M (2008) Both costs and benefits of sex correlate with relative frequency of asexual reproduction in cyclically parthenogenic Daphnia pulicaria populations. Genetics 179:1497–1502

    PubMed Central  PubMed  Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Barata C, Hontoria F et al (1996) Competition between sexual and parthenogenetic Artemia: temperature and strain effects. J Exp Mar Biol Ecol 196:313–328

    Google Scholar 

  • Barton NH (1995a) A general-model for the evolution of recombination. Genet Res 65:123–144

    PubMed  CAS  Google Scholar 

  • Barton NH (1995b) Linkage and the limits to natural selection. Genetics 140:821–841

    PubMed Central  PubMed  CAS  Google Scholar 

  • Becks L, Agrawal AF (2010) Higher rates of sex evolve in spatially heterogeneous environments. Nature 468:89–92

    PubMed  CAS  Google Scholar 

  • Becks L, Agrawal AF (2011) The effect of sex on the mean and variance of fitness in facultatively sexual rotifers. J Evol Biol 24:656–664

    PubMed  CAS  Google Scholar 

  • Becks L, Agrawal AF (2012) The evolution of sex is favoured during adaptation to new environments. PLoS Biol 10

    Google Scholar 

  • Becks L, Agrawal AF (2013) Higher rates of sex evolve under K-selection. J Evol Biol 26:900–905

    PubMed  CAS  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Bernstein H, Byerly HC et al (1985) Genetic damage, mutation, and the evolution of sex. Science 229:1277–1281

    PubMed  CAS  Google Scholar 

  • Bernstein H, Hopf FA et al (1987) The molecular basis of the evolution of sex. Adv Genet Mol Genet Med 24:323–370

    CAS  Google Scholar 

  • Beukeboom LW, Vrijenhoek RC (1998) Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol 11:755–782

    Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Google Scholar 

  • Bruggeman J, Debets AJM et al (2003) Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. Genetics 164:479–485

    PubMed Central  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno P, Danchin EGJ (2014) Parasitic success without sex—the nematode experience. J Evol Biol 27:1323–1333

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) Origins of the machinery of recombination and sex. Heredity 88:125–141

    PubMed  CAS  Google Scholar 

  • Charlesworth B (1993) Directional selection and the evolution of sex and recombination. Genet Res 61:205–224

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1975) Experiment on recombination load in Drosophila melanogaster. Genet Res 25:267–274

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Morgan MT et al (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet Res 61:39–56

    Google Scholar 

  • Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420:664–666

    PubMed  CAS  Google Scholar 

  • Colegrave N, Kaltz O et al (2002) The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56:14–21

    PubMed  Google Scholar 

  • Cooper TF, Lenski RE et al (2005) Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proc R Soc B Biol Sci 272:311–317

    Google Scholar 

  • Cutter AD, Payseur BA (2003) Rates of deleterious mutation and the evolution of sex in Caenorhabditis. J Evol Biol 16:812–822

    PubMed  CAS  Google Scholar 

  • DaSilva J, Bell G (1996) The ecology and genetics of fitness in Chlamydomonas 7. The effect of sex on the variance in fitness and mean fitness. Evolution 50:1705–1713

    Google Scholar 

  • de Visser JAGM, Elena SF (2007) The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8:139–149

    PubMed  Google Scholar 

  • Decaestecker E, Gaba S et al. (2007). Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870–U816

    Google Scholar 

  • Doncaster CP, Pound GE et al (2003) Dynamics of regional coexistence for more or less equal competitors. J Anim Ecol 72:116–126

    Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    PubMed  CAS  Google Scholar 

  • Dufresne F, Hebert PDN (1995) Polyploidy and clonal diversity in an arctic cladoceran. Heredity 75:45–53

    Google Scholar 

  • Elzinga JA, Chevasco V et al (2012) Low parasitism rates in parthenogenetic bagworm moths do not support the parasitoid hypothesis for sex. J Evol Biol 25:2547–2558

    PubMed  CAS  Google Scholar 

  • Engelmoer DJP, Rozen DE (2011) Competence increases survival during stress in Streptococcus pneumoniae. Evolution 65:3475–3485

    PubMed  Google Scholar 

  • Felsenstein J (1965) Effect of linkage on directional selection. Genetics 52:349–363

    PubMed Central  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) Evolutionary advantage of recombination. Genetics 78:737–756

    PubMed Central  PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2:861–867

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford (reprinted by Dover 1958)

    Google Scholar 

  • Flot J-F, Hespeels B et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457

    PubMed  CAS  Google Scholar 

  • Gandon S, Otto SP (2007) The evolution of sex and recombination in response to abiotic or coevolutionary fluctuations in epistasis. Genetics 175:1835–1853

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley

    Google Scholar 

  • Glesener RR, Tilman D (1978) Sexuality and components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659–673

    Google Scholar 

  • Goddard MR, Godfray HCJ et al (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640

    PubMed  CAS  Google Scholar 

  • Gorelick R, Heng HHQ (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65:1088–1098

    PubMed  Google Scholar 

  • Greig D, Borts RH et al (1998) The effect of sex on adaptation to high temperature in heterozygous and homozygous yeast. Proc R Soc B Biol Sci 265:1017–1023

    CAS  Google Scholar 

  • Haag CR, Ebert D (2004) A new hypothesis to explain geographic parthenogenesis. Ann Zool Fenn 41:539–544

    Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    Google Scholar 

  • Hamilton WD, Axelrod R et al (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hartfield M, Keightley PD (2012) Current hypotheses for the evolution of sex and recombination. Integr Zool 7:192–209

    PubMed  Google Scholar 

  • Henry L, Schwander T et al (2012) Deleterious mutation accumulation in asexual Timema stick insects. Mol Biol Evol 29:401–408

    PubMed  CAS  Google Scholar 

  • Hickey DA (1982) Selfish DNA—a sexually-transmitted nuclear parasite. Genetics 101:519–531

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) Effects of linkage on limits to artificial selection. Genet Res 8:269–294

    PubMed  CAS  Google Scholar 

  • Howard RS, Lively CM (1998) The maintenance of sex by parasitism and mutation accumulation under epistatic fitness functions. Evolution 52(2):604–610

    Google Scholar 

  • Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomicitc Ranunculus auricomus polyplid complex (Ranunculaceae). Int J Plant Sci 169:1219–1228

    PubMed Central  PubMed  Google Scholar 

  • Hörandl E (2009) Geographical parthenogenesis: opportunities for asexuality. In: Schon I, Martens K, VanDijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, Dordrecht, pp 161–186

    Google Scholar 

  • Hsu WS (1956) Oogenesis in the Bdelloidea rotifer Philodina roseola Ehrenberg. Cellule 59:281–296

    Google Scholar 

  • Jaenike J (1978) An hypothesis to account for the maintenance of sex within populations. Evol Theory 3:191–194

    Google Scholar 

  • Janko K, Drozd P et al (2011) Do clones degenerate over time? Explaining the genetic variability of asexuals through population genetic models. Biol Direct 6(1):17

    PubMed Central  PubMed  Google Scholar 

  • Janko K, Drozd P et al (2008) Clonal turnover versus clonal decay: a null model for observed patterns of asexual longevity, diversity and distribution. Evolution 62:1264–1270

    PubMed  Google Scholar 

  • Johnson SG (2006) Geographic ranges, population structure, and ages of sexual and parthenogenetic snail lineages. Evolution 60:1417–1426

    PubMed  Google Scholar 

  • Johnson SG Bragg E (1999) Age and polyphyletic origins of hybrid and spontaneous parthenogenetic Campeloma (Gastropoda: Viviparidae) from the southeastern United States. Evolution 53(6):1769–1781

    Google Scholar 

  • Jokela J, Lively CM (1995) Spatial variation in infection by digenetic trematodes in a population of fresh-water snails (Potamopyrgus antipodarum). Oecologia 103:509–517

    Google Scholar 

  • Jokela J, Lively CM et al (1997) Evidence for a cost of sex in the freshwater snail Potamopyrgus antipodarum. Ecology 78:452–460

    Google Scholar 

  • Kaltz O, Bell G (2002) The ecology and genetics of fitness in Chlamydomonas. XII. Repeated sexual episodes increase rates of adaptation to novel environments. Evolution 56:1743–1753

    PubMed  Google Scholar 

  • Kearney M, Shine R (2004) Morphological and physiological correlates of hybrid parthenogenesis. Am Nat 164:803–813

    Google Scholar 

  • Kearney MR (2003) Why is sex so unpopular in the Australian desert? Trends Ecol Evol 18(12):605–607

    Google Scholar 

  • Kelley SE, Antonovics J et al (1988) A test of the short-term advantage of sexual reproduction. Nature 331:714–716

    Google Scholar 

  • Kerstes NAG, Berenos C et al (2012) Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol Biol 12

    Google Scholar 

  • Killick SC, Carlsson AM et al (2006) Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. J Evol Biol 19:1603–1611

    PubMed  CAS  Google Scholar 

  • King KC, Delph LF et al (2009) The geographic mosaic of sex and the Red Queen. Curr Biol 19:1438–1441

    PubMed  CAS  Google Scholar 

  • Koivisto RKK, Braig HR (2003) Microorganisms and parthenogenesis. Biological Journal of the Linnean Society 79:43–45

    Google Scholar 

  • Kondrashov AS (1992) Classification of hypotheses on the advantage of amphimixis. In: Symposium on the evolution of sex, Blacksburg, Va

    Google Scholar 

  • Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84:372–387

    PubMed  CAS  Google Scholar 

  • Koskella B, Lively CM (2009) Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 63:2213–2221

    PubMed  Google Scholar 

  • Kumpulainen T, Grapputo A et al (2004) Parasites and sexual reproduction in psychid moths. Evolution 58:1511–1520

    PubMed  Google Scholar 

  • Lachapelle J, Bell G (2012) Evolutionary rescue of sexual and asexual populations in a deteriorating environment. Evolution 66:3508–3518

    PubMed  Google Scholar 

  • Law JH, Crespi BJ (2002) Recent and ancient asexuality in Timema walkingsticks. Evolution 56:1711–1717

    PubMed  Google Scholar 

  • Lehtonen J, Jennions MD et al (2012) The many costs of sex. Trends Ecol Evol 27:172–178

    PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Lively CM (1987) Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328:519–521

    Google Scholar 

  • Lively CM (2010) Parasite virulence, host life history, and the cost and benefits of sex. Ecology 91

    Google Scholar 

  • Lively CM, Lyons EJ et al (1998) Environmental stress and the maintenance of sex in a freshwater snail. Evolution 52:1482–1486

    Google Scholar 

  • Lomnicki A (2001) Carrying capacity, competition and maintenance of sexuality. Evol Ecol Res 3:603–610

    Google Scholar 

  • Lynch M, Deng HW (1994) Genetic slippage in response to sex. Am Nat 144:242–261

    Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    PubMed  CAS  Google Scholar 

  • Moritz C,m Heideman A (1993) The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae)—Reciprocal origins and diverse mitrochondrial DNA in western populations. Syst Biol 42(3):293–306

    Google Scholar 

  • Pongratz N, Storhas M et al (2003) Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evolutionary Biology 3

    Google Scholar 

  • Welch DM, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288:1211–1215

    Google Scholar 

  • Smith JM (1978). The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith JM (1988) Selection for recombination in a polygenic model—the mechanism. Genet Res 51:59–63

    PubMed  CAS  Google Scholar 

  • Smith JM, Szathmary E (1995) The major transitions in evolution. Nature 374:227–232

    Google Scholar 

  • McDonald JF (1993) Evolution and consequences of transposable elements. Curr Opin Genet Dev 3:855–864

    PubMed  CAS  Google Scholar 

  • Meirmans S, Meirmans PG et al (2012) The costs of sex: facing real-world complexities. Q Rev Biol 87:19–40

    PubMed  Google Scholar 

  • Melters DP, Paliulis LV et al (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593

    PubMed  CAS  Google Scholar 

  • Morran LT, Schmidt OG et al (2011) Running with the red queen: host-parasite coevolution selects for biparental sex. Science 333:216–218

    PubMed Central  PubMed  CAS  Google Scholar 

  • Muller HJ (1932) Some genetic aspects of sex. Am Nat 66:118–138

    Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Nei M (1967) Modification of linkage intensity by natural selection. Genetics 57:625

    Google Scholar 

  • Neiman M, Hehman G et al (2010) Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol Biol Evol 27:954–963

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neiman M, Meirmans S et al (2009) What can asexual lineage age tell us about the maintenance of sex? In: Schlichting CD, Mousseau TA (eds) Year in evolutionary biology 2009, vol 1168. New York Academy of Sciences, New York, pp 185–200

    Google Scholar 

  • Normark BB, Moran NA (2000) Testing for the accumulation of deleterious mutations in asexual eukaryote genomes using molecular sequences. J Nat Hist 34:1719–1729

    Google Scholar 

  • Olofsson H, Lundberg P (2007) The twofold cost of sex unfolded. Evol Ecol Res 9:1119–1129

    Google Scholar 

  • Otto SP (2009) The Evolutionary enigma of sex. Am Nat 174:S1–S14

    PubMed  Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261

    PubMed  CAS  Google Scholar 

  • Paland S, Lynch M (2006) Transitions to asexuality result in excess amino acid substitutions. Science 311:990–992

    PubMed  CAS  Google Scholar 

  • Peters AD, Lively CM (1999) The Red Queen and fluctuating epistasis: a population genetic analysis of antagonistic coevolution. Am Nat 154:393–405

    PubMed  Google Scholar 

  • Peters AD, Lively CM (2007) Short- and long-term benefits and detriments to recombination under antagonistic coevolution. J Evol Biol 20:1206–1217

    PubMed  CAS  Google Scholar 

  • Pfrender ME, Lynch M (2000) Quantitative genetic variation in Daphnia temporal changes in genetic architecture. Evolution 54:1502–1509

    PubMed  CAS  Google Scholar 

  • Poon A, Chao L (2004) Drift increases the advantage of sex in RNA bacteriophage Phi 6. Genetics 166:19–24

    PubMed Central  PubMed  Google Scholar 

  • Pylkov KV, Zhivotovsky LA et al (1998) Migration versus mutation in the evolution of recombination under multilocus selection. Genet Res 71:247–256

    PubMed  CAS  Google Scholar 

  • Quattro JM, Avise JC et al (1991) Molecular evidence for multiple origins of hybridogenetic fish clones (Peocilidae, Poeciliopsis). Genetics 127:391–398

    PubMed Central  PubMed  CAS  Google Scholar 

  • Redfield RJ (1993) Evolution of natural transformation—testing the DNA-repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133:755–761

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roze D (2012) Disentangling the benefits of sex. PLoS Biol 10

    Google Scholar 

  • Salathe M, Kouyos RD et al (2009) On the causes of selection for recombination underlying the red queen hypothesis. Am Nat 174:S31–S42

    PubMed Central  PubMed  Google Scholar 

  • Schwander T, Crespi BJ (2009) Twigs on the tree of life? Neutral and selective models for integrating macroevolutionary patterns with microevolutionary processes in the analysis of asexuality. Mol Ecol 18:28–42

    PubMed  Google Scholar 

  • Simon JC, Delmotte F et al. (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79:151–163

    Google Scholar 

  • Som C, Reyer HU (2007) Hemiclonal reproduction slows down the speed of Muller’s ratchet in the hybridogenetic frog rana esculenta. J Evol Biol 20:650–660

    PubMed  CAS  Google Scholar 

  • Stelzer C-P (2011) The cost of sex and competition between cyclical and obligate parthenogenetic rotifers. Am Nat 177:E43–E53

    PubMed  Google Scholar 

  • Suomalainen E (1950) Parthenogenesis in animals. Adv Genet 3:193–253

    PubMed  CAS  Google Scholar 

  • van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc London Ser B Biol Sci 358:1113–1120

    Google Scholar 

  • van Dijk PJ (2007) Potential and realized costs of sex in dandelions, Taraxacum officinale s.l. In: Horandl E, Grossniklaus U, VanDijk PJ Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp 215–233

    Google Scholar 

  • Vandel A (1928) La parthénogénèse géographique contribution a l`étude biologique et cy-tologique de la parthénogénèse naturelle. Bull Biol France Belg 62:164–281

    Google Scholar 

  • Vellend M, Harmon L et al. (2007) Effects of exotic species on evolutionary diversification. Trends in Ecology Evolution 22(9):481–488

    Google Scholar 

  • Verhoeven KJF, Biere A (2013) Geographic parthenogenesis and plant-enemy interactions in the common dandelion. BMC Evol Biol 13

    Google Scholar 

  • Weismann A (1889) The significance of sexual reproduction in the theory of natural selection. In: Poulton SSEB, Shipley AE (eds) Essays upon heredity and kindred biological problems. Clarendon Press, Oxford

    Google Scholar 

  • Weismann A (1904) The evolution theory. Edward Arnold, London

    Google Scholar 

  • West SA, Lively CM et al (1999a) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012

    Google Scholar 

  • West SA, Lively CM et al (1999b) Sex may need more than one. J Evol Biol 12:1053–1055

    Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Wolf HG, Wohrmann K et al (1987) Experimental-evidence for the adaptive value of sexual reproduction. Genetica 72:151–159

    PubMed  CAS  Google Scholar 

  • Zeyl C, Bell G (1997) The advantage of sex in evolving yeast populations. Nature 388:465–468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported and the German Research Foundation DFG (LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Becks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becks, L., Alavi, Y. (2015). Using Microevolution to Explain the Macroevolutionary Observations for the Evolution of Sex. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_8

Download citation