Skip to main content

Macroevolution in and Around the Hominin Clade

Part of the Interdisciplinary Evolution Research book series (IDER,volume 2)

Abstract

In this review, we discuss the criteria for recognizing species and genera within the fossil record in general, and within the hominin clade in particular. We review the grade concept, suggest how taxa within the hominin clade can be divided into grades, and define the grade categories. We discuss the difficulties with studying macroevolution in the hominin clade but suggest that at least one trait, brain size, may provide insight into the tempo and mode of evolution. We also review evidence suggesting that stasis is the dominant signal in two early hominin taxa that have substantial and well-dated fossil records. We discuss the role of evolutionary forces in forming macroevolutionary patterns and find that while natural selection appears to be the dominant force, some well-known interspecific and intraspecific differences in hominins may have been the result of random genetic drift. Lastly, we suggest that homoplasy makes generating reliable hypotheses about relationships among early hominins more difficult than most researchers are willing to admit.

Keywords

  • Clade
  • Grade
  • Hominin
  • Macroevolution
  • Mode
  • Selection
  • Tempo

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15045-1_11
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15045-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Ackermann RR, Cheverud JM (2004) Detecting genetic drift versus selection in human evolution. Proc Natl Acad Sci USA 101:17946–17951. doi:10.1073/pnas.0405919102

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Arambourg C, Coppens Y (1968) Découverte d’un australopithécien nouveau dans les gisements de l’Omo (Éthiopie). S Afr J Sci 64:58–59

    Google Scholar 

  • Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: a new online resource for primate phylogeny. Evol Anthropol 19:114–118. doi:10.1002/evan.20251

    CrossRef  Google Scholar 

  • Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst 133–164

    Google Scholar 

  • Bernor RL, Armour-Chelu M (2010) Equidae. In: Werdelin L, Sanders B (eds) Cenozoic mammals of Africa. University of California Press, pp 685–721

    Google Scholar 

  • Betti L, Balloux F, Hanihara T, Manica A (2010) The relative role of drift and selection in shaping the human skull. Am J Phys Anthropol 141:76–82. doi:10.1002/ajpa.21115

    PubMed  Google Scholar 

  • Betti L, von Cramon-Taubadel N, Manica A, Lycett SJ (2013) Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes. PLoS ONE 8:e55909. doi:10.1371/journal.pone.0055909.t005

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Bradley BJ (2008) Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J Anat 212:337–353. doi:10.1111/j.1469-7580.2007.00840.x

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Brandon-Jones, D, Eudey AA., Geissmann T, Groves CP, Melnick DJ, Morales JC, Shekelle M, Stewart CB (2004). Asian primate classification. International Journal of Primatology 25:97–164

    Google Scholar 

  • Brunet M, Guy F, Pilbeam D et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151. doi:10.1038/nature00879

    CrossRef  PubMed  CAS  Google Scholar 

  • Caccone A, Powell JR (1989) DNA divergence among hominoids. Evolution 43:925–942

    CrossRef  Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evolution 36:474–498

    CrossRef  Google Scholar 

  • Cheverud JM (1996) Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. J Evol Biol 9:5–42

    CrossRef  Google Scholar 

  • Le Gros Clark (1964) The fossil evidence for human evolution: an introduction to the study of paleoanthropology. University of Chicago Press, Chicago

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190:309–323

    CrossRef  Google Scholar 

  • Collard M, Wood B (2000) How reliable are human phylogenetic hypotheses? Proc Natl Acad Sci USA 97:5003–5006

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Cronin JE, Boaz NT, Stringer CB, Rak Y (1981) Tempo and mode in hominid evolution. Nature 292:113–122

    CrossRef  PubMed  CAS  Google Scholar 

  • Diogo R, Wood B (2011) Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 219:273–359. doi:10.1111/j.1469-7580.2011.01403.x

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobzhansky TG, Dobzhansky T (1937) Genetics and the Origin of Species. Columbia University Press, New York City

    Google Scholar 

  • Domínguez-Rodrigo M, Pickering TR, Baquedano E et al (2013) First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania. PLoS ONE 8:e80347. doi:10.1371/journal.pone.0080347.s001

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    CrossRef  Google Scholar 

  • Eldredge N (1989) Macroevolutionary dynamics: species, niches, and adaptive peaks. McGraw-Hill, New York City

    Google Scholar 

  • Eldredge N (1993) What, if anything, is a species? In: Kimbel W, Martin L (eds) Advances in primatology. Springer, US, pp 3–20

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. Models Paleobiol 82:115

    Google Scholar 

  • Eldredge N, Tattersall I (1975) Evolutionary models, phylogenetic reconstruction, and another look at hominid phylogeny. Contrib Primatol 5:218–242

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection, reprint, illustrated, annotated. Oxford University Press, Oxford

    Google Scholar 

  • Gatesy J, Amato G, Vrba E et al (1997) A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol Phylogenet Evol 7:303–319

    CrossRef  PubMed  CAS  Google Scholar 

  • Gibbs S, Collard M, Wood B (2002) Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis. J Anat 200:3–49

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Gibbs S, Collard M, Wood B (2000) Soft-tissue characters in higher primate phylogenetics. Proc Natl Acad Sci USA 97:11130–11132. doi:10.1073/pnas.190252697

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Godfrey L, Jacobs KH (1981) Gradual, autocatalytic and punctuational models of hominid brain evolution: a cautionary tale. J Hum Evol 10:255–272

    CrossRef  Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Goodman M (1963) Classification and human evolution. Wenner-Gren Foundation, New York

    Google Scholar 

  • Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiology 6:119–130

    Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 115–151

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    CrossRef  PubMed  CAS  Google Scholar 

  • Grabowski MW, Polk JD, Roseman CC (2011) Divergent patterns of integration and reduced constraint in the human hip and the origins of bipedalism. Evolution 65:1336–1356. doi:10.1111/j.1558-5646.2011.01226.x

    CrossRef  PubMed  Google Scholar 

  • Grünbaum A (1902) Note on the blood relationship of man and the anthropoid apes. Lancet 159:143

    CrossRef  Google Scholar 

  • Groves C (2001) Primate Taxonomy. Smithsonian Books

    Google Scholar 

  • Groves CP (2005) Geographic variation within eastern chimpanzees (Pan troglodytes cf. schweinfurthii Giglioli, 1872). Australasian Primatology. 17:19–46

    Google Scholar 

  • Guy F, Lieberman DE, Pilbeam D et al (2005) Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium. Proc Natl Acad Sci USA 102:18836–18841. doi:10.1073/pnas.0509564102

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Haile-Selassie Y (2001) Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412:178–181. doi:10.1038/35084063

    CrossRef  PubMed  CAS  Google Scholar 

  • Haile-Selassie Y (2004) Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303:1503–1505. doi:10.1126/science.1092978

    CrossRef  PubMed  CAS  Google Scholar 

  • Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56

    CrossRef  PubMed  CAS  Google Scholar 

  • Hallam A (1989) What can the fossil record tell us about macroevolution. In: Hecht MK (Ed) Evolutionary Biology at the Crossroads. Queens College Press, Flushing, NY

    Google Scholar 

  • Henry AG, Ungar PS, Passey BH, Sponheimer M, Rossouw L, Bamford M, Sandberg P, de Ruiter DJ, Berger L (2012) The diet of Australopithecus sediba. Nature

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) Endocasts of early hominids. In: The human fossil record: brain endocasts-the paleoneurological evidence, vol 3, pp 39–107

    Google Scholar 

  • Huxley TH (1863) Evidence as to mans place in nature by Thomas Henry Huxley. Williams and Norgate, London

    Google Scholar 

  • Jablonski NG, Leakey MG (2008) Koobi Fora research project vol. 6. The fossil monkeys. California Academy of Sciences, San Francisco

    Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Kimbel WH, Lockwood C, Ward C et al (2006) Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. J Hum Evol 51:134–152. doi:10.1016/j.jhevol.2006.02.003

    CrossRef  PubMed  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    CrossRef  PubMed  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    CrossRef  Google Scholar 

  • Lande R (1980) Microevolution in relation to macroevolution. Paleobiology 6:233–238

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    CrossRef  Google Scholar 

  • Langergraber KE, Prufer K, Rowney C et al (2012) Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci USA 109:15716–15721. doi:10.1073/pnas.1211740109

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Lankester ER (1870) II.—On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. The Annals and Magazine of Natural History 6:34–43

    CrossRef  Google Scholar 

  • Lee SH, Wolpoff MH (2003) The pattern of evolution in Pleistocene human brain size. Paleobiology 29:186–196

    CrossRef  Google Scholar 

  • Lestrel PE (1976) Hominid brain size versus time: revised regression estimates. J Hum Evol 5:207–212

    CrossRef  Google Scholar 

  • Lestrel PE, Read DW (1973) Hominid cranial capacity versus time: a regression approach. J Hum Evol 2:405–411

    CrossRef  Google Scholar 

  • Levinton JS (2001) Genetics, paleontology, and macroevolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Lieberman BS, Eldredge N (2014) What is punctuated equilibrium? What is macroevolution? A response to Pennell et al. Trends Ecol Evol 1–2. doi:10.1016/j.tree.2014.02.005

  • Locke DP, Hillier LW, Warren WC et al (2011) Comparative and demographic analysis of orangutan genomes. Nature 469:529–533. doi:10.1038/nature09687

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Lockwood CA, Kimbel WH, Johanson DC (2000) Temporal trends and metric variation in the mandibles and dentition of Australopithecus afarensis. J Hum Evol 39:23–55. doi:10.1006/jhev.2000.0401

    CrossRef  PubMed  CAS  Google Scholar 

  • Lockwood CA, Kimbel WH, Lynch JM (2004) Morphometrics and hominoid phylogeny: support for a chimpanzee–human clade and differentiation among great ape subspecies. Proc Natl Acad Sci U S A 101:4356–4360

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Lovejoy CO, Cohn MJ, White TD (1999) Morphological analysis of the mammalian postcranium: a developmental perspective. Proc Natl Acad Sci U S A 96:13247–13252

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Lovejoy CO, McCollum MA (2010) Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait. Philos Trans R Soc Lond B Biol Sci 365:3289–3299. doi:10.1098/rstb.2010.0112

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Lovejoy CO, McCollum MA, Reno PL, Rosenman BA (2003) Developmental biology and human evolution. Annu Rev Anthropol 32:85–109. doi:10.1146/annurev.anthro.32.061002.093223

    CrossRef  Google Scholar 

  • Lovejoy CO, Meindl RS, et al. (2002) The Maka femur and its bearing on the antiquity of human walking: applying contemporary concepts of morphogenesis to the human fossil record. Am J Phys Anthropol 119:97–133. doi:10.1002/ajpa.10111

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, illustrated. Sinauer, Sunderland

    Google Scholar 

  • Manaster BJ (1979) Locomotor adaptations within the Cercopithecus genus: a multivariate approach. Am J Phys Anthropol 50:169–182. doi:10.1002/ajpa.1330500205

    CrossRef  PubMed  CAS  Google Scholar 

  • Marroig G, Cheverud JM (2004) Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? Am Nat 163:417–428. doi:10.1086/381693

    CrossRef  PubMed  Google Scholar 

  • Martin RD (1996) Scaling of the mammalian brain: the maternal energy hypothesis. News Physiol Sci 11:149–156

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Harvard

    Google Scholar 

  • Mounier A, Marchal F, Condemi S (2009) Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. J Hum Evol 56:219–246. doi:10.1016/j.jhevol.2008.12.006

    CrossRef  PubMed  Google Scholar 

  • Nakatsukasa M (2008) Comparative study of Moroto vertebral specimens. J Hum Evol 55:581–588. doi:10.1016/j.jhevol.2008.04.009

    CrossRef  PubMed  Google Scholar 

  • Nixon KC, Wheeler QD (1990) An amplification of the phylogenetic species concept. Cladistics 6:211–223

    CrossRef  Google Scholar 

  • Nuttall GHF, Graham-Smith GS, Pigg-Strangeways TSP (1904) Blood immunity and blood relationship. Cambridge University press, Boston

    Google Scholar 

  • Olson EC, Miller RL (1958) Morphological integration. University of Chicago Press, Chicago

    Google Scholar 

  • Paterson HE (1985) The recognition concept of species. In: Vrba ES (ed) Species and speciation. Transvaal Museum Monograph, pp 21–29

    Google Scholar 

  • Pennell MW, Harmon LJ, Uyeda JC (2014) Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 29:23–32. doi:10.1016/j.tree.2013.07.004

    CrossRef  PubMed  Google Scholar 

  • Perelman P, Johnson WE, Roos C et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342. doi:10.1371/journal.pgen.1001342.s025

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Prado-Martinez J, Sudmant PH, Kidd JM et al (2014) Great ape genetic diversity and population history. Nature 499:471–475

    CrossRef  CAS  Google Scholar 

  • Provine WB (1971) The origins of theoretical population genetics, 3rd ed. University of Chicago Press, Chicago

    Google Scholar 

  • Prufer K, Munch K, Hellmann I et al (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature. doi:10.1038/nature11128

    PubMed Central  PubMed  Google Scholar 

  • Richmond BG, Green DJ, Braun DR, et al (2011) New fossils from Ileret, Kenya, and the evolution of hominin hand function. In: Proceedings of American Association of Physical Anthropology Meetings. Wiley-Blackwell Commerce Place, 350 Main St, Malden 02148, MA USA, pp 253–253

    Google Scholar 

  • Rightmire GP (1981) Patterns in the evolution of Homo erectus. Paleobiology 7:241–246

    Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

    CrossRef  Google Scholar 

  • Rolian C, Lieberman DE, Hallgrimsson B (2010) The coevolution of human hands and feet. Evolution 64:1558–1568. doi:10.1111/j.1558-5646.2010.00944.x

    CrossRef  PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176. doi:10.1038/387173a0

    CrossRef  PubMed  CAS  Google Scholar 

  • Sarich VM, Wilson AC (1967) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Scally A, Dutheil JY, Hillier LW et al (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–175. doi:10.1038/nature10842

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Senut B, Pickford M, Gommery D et al (2001) First hominid from the Miocene (Lukeino Formation, Kenya): premier hominidé du Miocčne (formation de Lukeino, Kenya). Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 332:137–144

    Google Scholar 

  • Sepkoski D (2012) Rereading the fossil record. University of Chicago Press, Chicago

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1953) The baldwin effect. Evolution 7:110–117

    CrossRef  Google Scholar 

  • Simpson GG (1961) The major features of evolution. Columbia University Press, New-York

    Google Scholar 

  • Smith AB (2009) Systematics and the fossil record: documenting evolutionary patterns. Wiley, New York

    Google Scholar 

  • Singleton I, Wich S, Husson S, Stephens S, Utami-Atmoko SS, Leighton M, Rosen N, Traylor-Holzer K, Lacy R, Byers O (2004). Orangutan population and habitat viability assessment: final report. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN.

    Google Scholar 

  • Stevens NJ, Seiffert ER, O’Connor PM et al (2014) Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes. Nature 497:611–614. doi:10.1038/nature12161

    CrossRef  CAS  Google Scholar 

  • Strait DS (2001) Integration, phylogeny, and the hominid cranial base. Am J Phys Anthropol 114:273–297. doi:10.1002/ajpa.1041

    CrossRef  PubMed  CAS  Google Scholar 

  • Strait DS, Grine FE (2004) Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J Hum Evol 47:399–452. doi:10.1016/j.jhevol.2004.08.008

    CrossRef  PubMed  Google Scholar 

  • Suwa G (1988) Evolution of the “robust” australopithecines in the Omo succession: evidence from mandibular premolar morphology. In: Grine FE (ed) Evolutionary history of the robust australopithecines, pp 199–222

    Google Scholar 

  • Suwa G, Kono RT, Katoh S et al (2007) A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448:921–924. doi:10.1038/nature06113

    CrossRef  PubMed  CAS  Google Scholar 

  • TCSAC (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87. doi:10.1038/nature04072

    CrossRef  CAS  Google Scholar 

  • Tobias PV (1971) The brain in hominid evolution. Columbia University Press, New York

    Google Scholar 

  • Tobias PV (1985) Punctuational and phyletic evolution in the hominids. In: Vrba ES (ed) Species and speciation. Transvaal Museum Pretoria, pp 131–141

    Google Scholar 

  • Todd NE (2010) New phylogenetic analysis of the family Elephantidae based on cranial-dental morphology. Anat Rec 293:74–90. doi:10.1002/ar.21010

    CrossRef  Google Scholar 

  • Uyeda JC, Hansen TF, Arnold SJ, Pienaar J (2011) The million-year wait for macroevolutionary bursts. Proc Natl Acad Sci USA. doi:10.1073/pnas.1014503108

    Google Scholar 

  • Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Am Zool 47:147–163

    Google Scholar 

  • Walker A, Leakey RE (1988) The evolution of Australopithecus boisei. In: Grine FE (ed) Evolutionary history of the “robust” australopithecines. Transaction Publishers, New Jersey, pp 247–258

    Google Scholar 

  • Weaver TD, Roseman CC, Stringer CB (2007) Were neandertal and modern human cranial differences produced by natural selection or genetic drift? J Hum Evol 53:135–145. doi:10.1016/j.jhevol.2007.03.001

    CrossRef  PubMed  Google Scholar 

  • White TD (2010) Human origins and evolution: Cold Spring Harbor, deja vu. Cold Spring Harb Symp Quant Biol 74:335–344. doi:10.1101/sqb.2009.74.016

    CrossRef  Google Scholar 

  • White TD, Asfaw B, Beyene Y et al (2009) Ardipithecus ramidus and the paleobiology of early hominids. Science 326:64. doi:10.1126/science.1175802

    CrossRef  CAS  Google Scholar 

  • White TD, Suwa G, Asfaw B (1994) Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371:306–312. doi:10.1038/371306a0

    CrossRef  PubMed  CAS  Google Scholar 

  • Wolpoff MH (1994) Yes it is, no it isn’t: a reply to van Vark and Bilsborough. Am J Phys Anthropol 95:92–93

    CrossRef  Google Scholar 

  • Wolpoff MH (1984) Evolution in Homo erectus: the question of stasis. Paleobiology 389–406

    Google Scholar 

  • Wood B (2010) Reconstructing human evolution: achievements, challenges, and opportunities. Proc Natl Acad Sci USA 107(Suppl 2):8902–8909. doi:10.1073/pnas.1001649107

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Wood B, Schroer K (2013) Paranthropus. In: A companion to paleoanthropology. Blackwell Publishing Ltd, New York, pp 457–478

    Google Scholar 

  • Wood B, Wood C, Konigsberg L (1994) Paranthropus boisei: an example of evolutionary stasis? Am J Phys Anthropol 95:117–136. doi:10.1002/ajpa.1330950202

    CrossRef  PubMed  CAS  Google Scholar 

  • Young NM (2003) A reassessment of living hominoid postcranial variability: implications for ape evolution. J Hum Evol 45:441–464. doi:10.1016/j.jhevol.2003.09.001

    CrossRef  PubMed  Google Scholar 

  • Zuckerkandl E, Jones RT, Pauling L (1960) A comparison of animal hemoglobins by tryptic peptide pattern analysis. Proc Natl Acad Sci USA 46:1349

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

BW was supported by the GW Provost and the GW Signature Program, and MG by the GW Signature Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wood, B., Grabowski, M. (2015). Macroevolution in and Around the Hominin Clade. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_11

Download citation