Potential of Ascidae, Blattisociidae and Melicharidae (Acari: Mesostigmata) as Biological Control Agents of Pest Organisms

  • Gilberto José de MoraesEmail author
  • Renan Venancio
  • Victor L. V. dos Santos
  • Adilson D. Paschoal
Part of the Progress in Biological Control book series (PIBC, volume 19)


Predatory mites are among the natural enemies considered for the control of damaging mites and some small insects. It is conceivable that effective control agents could be found in the Ascidae, Blattisociidae and Melicharidae, families whose members are rather similar morphologically. Together, these families comprise over 900 described species. It is estimated that slightly over half of these were described from soil, grasses, mosses or dead organic matter on the soil surface. The main emphasis in this review lies on a discussion about aspects most related to the possible use of members of these families as biological control agents, namely on their association with other organisms (including their capacity to disperse between parts of the preferred habitats), feeding habits and general biology. Most of the studied species of this group of families belong to Blattisocius Keegan and Lasioseius Berlese (both Blattisociidae) and Proctolaelaps Berlese (Melicharidae). Species of these and other genera have been shown to be generalists. Despite the relatively little effort dedicated to evaluate the potential use of these mites as biological control agents, some have been reported as very promising. Prospective uses can be inferred mainly from studies involving pests living in humid habitats, as for example rice crop, as well as soil and storage pests. In order for these mites to be effectively used by growers, efforts should be concentrated on fieldwork to validate promising laboratory results.


Predatory mites Lasioseius Blattisocius Proctolaelaps 



We are especially thankful to the following researchers who provided copies of the papers referred to in this publication: A.M. Afifi, C. G. Athanassiou, R.B. Halliday, F.M. Momen, P.S. Nielsen, J. Riudavets and R. Abo-Shnaf. We are also thankful to C.H.W. Flechtmann, for critically reviewing an earlier version of this document and providing us numerous suggestions.


  1. Abou-Awad BA, Korayem AM, Hassan MF, Abou-Elela MA (2001) Life history of the predatory mite Lasioseius athiasae (Acari: Ascidae) on various kinds of food substances: a polypeptide analysis of prey consideration. J Appl Entomol 125:125–130Google Scholar
  2. Afifi AM (1985) Lasioseius aegypticus, a new species from Egypt, with notes on its biology (Acari: Gamasida: Ascidae). Proceedings of Egypt’s National Conference of Entomology 1:453–461, Cairo, 6–9 Dec 1982, pp 453–461Google Scholar
  3. Afifi AM (1989) Biological studies and prey range of two predaceous soil mites (Acari: Gamasida). Bull Entomol Soc Egypt 68:175–180Google Scholar
  4. Afifi AM, Hassan MF, El-Bilshlawy SO (1984) Proctolaelaps striatus, a new species from Egypt, with notes on its biology (Acari: Gamasida: Ascidae). Bull Fac Agr Univ Cairo 35:1215–1226Google Scholar
  5. Afifi AM, Hassan MF, Nawar MS (1986) Notes on the biology feeding habits of Protogamasellus minutus Hafez, El-Badry & Nasr (Acari: Gamasida: Ascidae). Bull Entomol Soc Egypt 66:251–259Google Scholar
  6. Ahmed MM, Mowafi MH (1998) Life tables of Proctolaelaps pygmaeus (Muller) (Gamasida: Ascidae) at different temperatures. Al-Azhar J Agr Res 27:338–348Google Scholar
  7. Andrews JRH, Ramsay GW (1982) A case of papular dermatosis in man attributed to an ascid mite (Acari). J Med Entomol 19:111–112PubMedGoogle Scholar
  8. Ashburner M (1989) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  9. Athanassiou CG, Palyvos NE (2006) Laboratory evaluation of two diatomaceous earth formulations against Blattisocius keegani Fox (Mesostigmata: Ascidae) and Cheyletus malaccensis Oudemans (Prostigmata: Cheyletidae). Biol Contr 38:350–355Google Scholar
  10. Athanassiou CG, Kavallieratos NG, Palyvos NE, Sciarretta A, Trematerra P (2005) Spatiotemporal distribution of insects and mites in horizontally stored wheat. J Econ Entomol 98:1058–1069PubMedGoogle Scholar
  11. Athias-Henriot C (1968) L’appareil d’insémination laelapoïde (Acariens anachtinotriches: Laelapoidea, ♀♀). Premières observations. Possibilité d’emploi à des fins taxonomiques. Bull Sic Borgogne 25:229–274Google Scholar
  12. Baker EW, Wharton GW (1952) An introduction to acarology. The Macmillan Company, New York, p 465Google Scholar
  13. Barker PS (1967) Bionomics of Blattisocius keegani (Fox) (Acarina: Ascidae), a predator on eggs of pests of stored grains. Can J Zool 45:1093–1099Google Scholar
  14. Beaulieu F, Walter DE (2007) Predation in suspended and forest floor soils: observations on Australian mesostigmatic mites. Acarologia 47:34–54Google Scholar
  15. Beaulieu F, Weeks AR (2007) Free-living mesostigmatic mites in Australia: their roles in biological control and bioindication. Australian J Entomol Agr 47:460–478Google Scholar
  16. Beavers JB, Denmark HA, Sehime AG (1972) Predation by Blattisocius keegani on egg masses of Diaprepes abbreviatus in the laboratory. J Econ Entomol 65:1483–1484PubMedGoogle Scholar
  17. Bedard WD (1937) Biology and control of the Douglas-fir beetle Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae) with notes on associated insects. Res Stud (State College of Washington) 5:103–105Google Scholar
  18. Bhattacharyya AK (2001) Present state of knowledge of Indian ascid mites (Acarina: Mesostigmata) and their zoogeographical distribution. In: Second acarology symposium, abstracts, African Acarology Association, International Centre of Insect Physiology and Ecology, Nairobi. Available via DIALOG. Accessed 31 Mar 2014
  19. Binns ES (1972) Arctoseius cetratus (Sellnick) (Acarina: Ascidae) phoretic on mushroom sciarid flies. Acarologia 14:350–356Google Scholar
  20. Binns ES (1974) Notes on the biology of Arctoseius cetratus (Sellnick) (Mesostigmata: Ascidae). Acarologia 16:577–582Google Scholar
  21. Binns ES (1982) Phoresy as migration – some functional aspects of phoresy in mites. Biol Rev 57:571–620Google Scholar
  22. Bram RA (1956) A new predatory mite from insect culture (Acarina: Phytoseiidae). Proc Entomoll Soc Washington 58:292–294Google Scholar
  23. Britto EPJ, Gago E, Moraes GJ (2012) How promising is Lasioseius floridensis as a control agent of Polyphagotarsonemus latus? Exp Appl Acarol 56:221–231PubMedGoogle Scholar
  24. Burkhardt F (1920) Zur Biologie der Mehlmotte (Ephestia kuehniella Zeller). Zeitschrift für Angewandte Entomologie 6:25–60Google Scholar
  25. Cantelo WW, Boswell AL (1973) Mite control with chemicals: a Drosophila culture. Drosophila Information Service 50:163Google Scholar
  26. Cayrol JC (1970) Action des autres composants de la biocénose du champignon de couche sur le nématode mycophage, Ditylenchus myceliophagus J. B. Goodey, 1958, et étude de son anabiose: Forme de survie en conditions défavorables. Revue d’écologie et de biologie du sol 7:409–440Google Scholar
  27. Chow YS, Liu MA (1984) Preliminary studies on a parasite and a predatory mite of the tarsonemid mite Steneotarsonemus spinki Smiley. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 1. Ellis Horwood, Chichester, pp 323–327Google Scholar
  28. Çobanoglu S, Bayram S, Denizhan E, Saglam HD (2007) The effect of different temperatures and food densities on development of Blattisocius tarsalis (Berlese) (Acari: Ascidae) reared on Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Turkiye Entomoloji Dergisi 31:7–20Google Scholar
  29. Colwell RK (1973) Competition and coexistence in a simple tropical community. Am Nat 107:737–760Google Scholar
  30. Colwell RK (1979) The geographical ecology of hummingbird flower mites in relation to their host plants and carriers. Recent Adv Acarol 2:461–468Google Scholar
  31. Colwell RK (1986) Population structure and sexual selection for host fidelity in the speciation of hummingbird flower mites. In: Karlin S, Nevo E (eds) Evolutionary processes and theory. Academic, Orlando, pp 475–495Google Scholar
  32. Colwell RK, Naeem S (1979) The first known species of hummingbird flower mite north of Mexico: Rhinoseius epoecus n. sp. (Mesostigmata: Ascidae). Ann Entomol Soc Am 72:485–491Google Scholar
  33. Colwell RK, Naeem S (1994) Life-history patterns of hummingbird flower mites in relation to host phenology and morphology. In: Houck MA (ed) Mites – ecological and evolutionary analyses of life-history patterns. Chapman & Hall, New York, pp 23–44Google Scholar
  34. Cruz DD, Abreu VHR, Sluys MV (2007) The effect of hummingbird flower mites on nectar availability of two sympatric Heliconia species in a Brazilian Atlantic forest. Ann Bot 100:581–588PubMedCentralPubMedGoogle Scholar
  35. Cruz WP, Sarmento RA, Pedro-Neto M, Teodoro AV, Rodrigues DM, de Moraes GJ (2014) Population dynamics of Aceodromus convolvuli (Acari: Mesostigmata: Blattisociidae) on spontaneous plants associated with Jatropha curcas in central Brazil. Exp Appl Acarol 64:309–319PubMedGoogle Scholar
  36. Darst PH, King EW (1969) Biology of Melichares tarsalis in association with Plodia interpunctella. Ann Entomol Soc Am 62:747–749Google Scholar
  37. Esteca F de CN, Pérez-Madruga Y, Britto EPJ, de Moraes GJ (2014) Does the ability of Blattisocius species to prey on mites and insects vary according to the relative length of the cheliceral digits? Acarologia 54(3):359–365Google Scholar
  38. De Leon D (1967) Some mites of the Caribbean Area: Part II. The genus Asca in the Caribbean Area (Acarina: Ascidae). Allen Press, Inc. Lawrence, Kansas, pp 47–66Google Scholar
  39. De Leon-Facundo JB, Corpuz-Raros LA (2002) Two new species and a new record of predatory mites of the genus Lasioseius Berlese (Acari: Ascidae) inhabiting ornamental crops in the Philippines. The Philippine Agr Sci 85:39–46Google Scholar
  40. de Sousa JM, Gondim MGC Jr, Barros R, de Oliveira JV (2005) Ácaros em produtos armazenados comercializados em supermercados e feiras livres da cidade do Recife. Neotropical Entomol 34:303–309Google Scholar
  41. Demite PR, Moraes GJ, McMurtry JA, Denmark HA, de Castilho RC (2012) Phytoseiidae Database. Available via DIALOG. Accessed 4 Jan 2014
  42. Dmoch J (1995) Arctoseius semiscissus (Berlese 1892) (Acarina: Ascidae) foretic on mushroom sciarid flies in Poland – a possible agent for biological control of sciarids in mushroom houses. In: Elliot TJ (ed) Science and cultivation of edible fungi. Balkema, Rotterdam, pp 533–537Google Scholar
  43. Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J Med Entomol 23:520–531PubMedGoogle Scholar
  44. Egan ME, Hunter PE (1975) Redescription of a cockroach mite, Proctolaelaps nauphoetae, with notes on its biology. Ann Entomol Soc Am 68:361–364Google Scholar
  45. Egan ME, Moss WW (1969) The life cycle and behavior of a cockroach mite, Proctolaelaps nauphoetae (Acari: Mesostigmata: Ascidae). Notulae Naturae 420:1–9Google Scholar
  46. Enkegaar A, Broodsgaard HF (2000) Lasioseius fimetorum: a soil-dwelling predator of glasshouse pests? Biol Contr 45:285–293Google Scholar
  47. Flanders SE, Badgley ME (1963) Prey-predator interactions in self-balanced laboratory populations. Hilgardia 35(8):145–183Google Scholar
  48. Flechtmann CHW (1976) Sobre dois ácaros (Arthropoda: Acari) frequentes em criações da broca da cana-de-açúcar (Insecta: Lepidoptera). Ecossistema 1(1):62–63Google Scholar
  49. Fouly AH (1997) Influence of different nourishment on the biology of Lasioseius dentatus (Fox), a new record from Egypt (Acari: Gamasida: Ascidae). Egyptian J Biol Pest Contr 7:1–6Google Scholar
  50. Galvão AS, Gondim MGC Jr, Moraes GJ (2011) Life history of Proctolaelaps bulbosus feeding on the coconut mite Aceria guerreronis and other possible food types occurring on coconut fruits. Exp Appl Acarol 53:245–252PubMedGoogle Scholar
  51. Goff ML (1989) Gamasid mites as potential indicators of postmortem interval. In: Channabasavanna GP, Viraktamath CA (eds) Progress in acarology, vol 1. Oxford & IBH Publishing, New Delhi, pp 443–450Google Scholar
  52. Graham WM (1970) Warehouse ecology studies of bagged maize in Kenya – II. Ecological observations on an infestation by Ephestia (Cadra) cautella (Walker) (Lepidoptera: Phycitidae). J Stored Product Res 6:157–167Google Scholar
  53. Hafez SM, Mallawani MA, Taher SH (1988) Biological studies on Blattisocius tarsalis Keegan, a predatious mite inhabiting stored food in Egypt. Ann Agric Sci (Faculty of Agriculture, Ain Shams University of Cairo, Egypt) 33:1387–1393Google Scholar
  54. Haines CP (1979) A revision of the genus Blattisocius Keegan (Mesostigmata: Ascidae) with special reference to B. tarsallis (Berlese) and the description of a new species. Acarologia 20:19–38PubMedGoogle Scholar
  55. Haines CP (1981) Laboratory studies on the role of an egg predator, Blattisocius tarsalis (Berlese) (Acari: Ascidae), in relation to the natural control of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) in warehouses. Bull Entomol Res 71:555–574Google Scholar
  56. Halliday RB, Walter DE, Lindquist EE (1998) Revision of the Australian Ascidae (Acarina: Mesostigmata). Invertebr Taxon, East Melbourne 12:1–54Google Scholar
  57. Hansen LS, Nielsen PS (2001) Blattisocius tarsalis as a control agent of Ephestia kuehniella in flour mills; initial results of a field trial. Proceedings of the first meeting of Working Group 4, Lisbon, 6–7 Sept 2001. Bio-control of arthropod pests in the stored products, pp 44–46Google Scholar
  58. Hase A (1928) Insekten. In: Peterfi T (ed) Methodik der wissenschaftlichen Biologie, Allgemeine Physiologie, vol 2. Verlag von Julius Springer, Berlin, p 271Google Scholar
  59. Hase A (1933) Über die Mehlmottenmilbe Typhlodromus tineivorus Oudems., 1929. Eine Berichtigung. Zoologischer Anzeiger, Leipzig 104:237–239Google Scholar
  60. Heyneman AJ, Colwell RK, Naeem S, Dobkin DS, Hallet B (1991) Host plant discrimination: experiments with hummingbird flower mites. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. John Wiley & Sons, New York, pp 45–485Google Scholar
  61. Hinton HE (1971) Plastron respiration in the mite, Platyseius italicus. J Insect Physiol 17:1185–1199Google Scholar
  62. Hirschmann W, Rühm W (1953) Milben und Fadenwürmer als Symphoristen und Parasiten des Buchdruckers. Mikrokosmos 43:7–10Google Scholar
  63. Houck MA (1994) Mites as potential horizontal transfer vectors of eukaryotic mobile genes: Proctolaelaps regalis as a model. In: Houck MA (ed) Mites: ecological & evolutionary analyses of the life-history patterns. Chapman & Hall, London, pp 45–69Google Scholar
  64. Houck MA, Clark JB, Peterson KR, Kidwell MG (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regali. Science 253:1125–1129PubMedGoogle Scholar
  65. Hughes AM (1976) The mites of stored food and houses, 2nd edn, Technical Bulletin, 9. Ministry of Agriculture, Fisheries and Food, London, p 400Google Scholar
  66. Hummel NA, Castro BA, McDonald EM, Pellerano MA, Ochoa R (2009) The panicle rice mite, Steneotarsonemus spinki Smiley, a re-discovered pest of rice in the United States. Crop Prot 28:547–560Google Scholar
  67. Ibrahim GA, Afifi AM, Abdel-Halim SM (1989) Laboratory observations on the biology of Proctolaelaps pygmaeus (Muller) and Proctogamasellus mica (Athias-Henriot) (Acari: Gamasida: Asidae). Bull Entomol Soc Egypt 68:43–47Google Scholar
  68. Ibrahim GA, Abdel-Samedi MA, El-Gazzar HF (1992) Biological aspects of predator mite Proctolaelaps subcorticalis Lindquist (Ascidae: Mesostigmata) with description to its immature stages. Minufiya J Agr Res 17:2015–2023Google Scholar
  69. Imbriani JL, Mankau R (1983) Studies on Lasioseius scapulatus, a mesostigmatid mite predacious on nematodes. J Nematol 15:523–528PubMedCentralPubMedGoogle Scholar
  70. Karg W (1961) Oekologische Untersuchungen von edaphischen Gamasiden (Acarina: Parasitiformes) 2 Teil. Pedobiologia 1:77–98Google Scholar
  71. Karg W (1967) Syno¨ kologische Untersuchungen von Bodenmilben aus forstwirtschaftlich und landwirtschaftlich genutzten Böden. Pedobiologia 7:198–214Google Scholar
  72. Karg W (1983) Distribution and significance of predatory mites of the cohort Gamasina as antagonists of nematodes. Pedobiologia 25:219–232Google Scholar
  73. Karg W (1988) To the knowledge of the genus Proctolaelaps Berlese, 1923 (Acarina: Parasitiformes). Zoologische Jahrbucher Systematik 115:441–454 [in German]Google Scholar
  74. Karg W (1998) Neue Raubmilbenarten der Ascidae Oudemans, 1905 im tropischen Regenwald von Ecuador (Acarina: Parasitiformes). Zoologische Reihe 74:49–64Google Scholar
  75. Karg W, Baker RA, Jenkinson L (1995) Mite infestation in Drosophila cultures and description of a new mite species of the genus Proctolaelaps Berlese with notes on its control in the laboratory (Acarina: Parasitiformes). Deutsche Entomologische Zeitschrift 42:187–190Google Scholar
  76. Kinn DN (1983) The life cycle of Proctolaelaps dendroctoni Lindquist and Hunter (Acari: Ascidae): a mite associated with pine bark beetles. Int J Acarol 9:205–210Google Scholar
  77. Krantz GW, Poinar GO Jr (2004) Mites, nematodes and the multimillion dollar weevil. J Nat Hist 38:135–141Google Scholar
  78. Lawson-Balagbo LM, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P (2007) Life history of the predatory mite Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidates for biological control of Aceria guerreronis. Exp Appl Acarol 43:49–61PubMedGoogle Scholar
  79. Leclercq M, Verstraeten C (1988) Entomologie et médecine légale. Datation de la mort. Acariens trouvés sur des cadavres humains [Entomology and forensic medicine. Determination of the time of death. Acari found on human corpses]. Bull Annu Soc Royale Belge d’Entomol 124:195–200Google Scholar
  80. Lesna I, Sabelis MW, Bolland HR, Conijn CGM (1995) Candidate natural enemies for control of Rhizoglyphus robini Claparède (Acari: Astigmata) in lily bulbs: exploration in the field and pre-selection in the laboratory. Exp Appl Acarol 19:655–669Google Scholar
  81. Lima DB, Melo JWS, Gondim MGC Jr, Moraes GJ (2012) Limitations of Proctolaelaps bickleyi as control agents of Aceria guerreronis. Exp Appl Acarol 56:223–246Google Scholar
  82. Lindquist EE (1961) Taxonomic and biological studies of mites of the genus Arctoseius Thor from Barrow, Alaska (Acarina: Aceosejidae). Hilgardia 30:301–350Google Scholar
  83. Lindquist EE (1962) Mucroseius monochami, a new genus and species of mite (Acarina: Blattisociidae) symbiotic with sawyer beetles. Can Entomol 94:972–980Google Scholar
  84. Lindquist EE (1963) A taxonomic review of the genus Hoploseius Berlese (Acarina: Blattisociidae). Can Entomol 95:1175–1185Google Scholar
  85. Lindquist EE (1964) A revision of mites of subfamily Blattisociinae (Acarina: Blattisociidae) in American north of Mexico. Ph.D. dissertation, University of California, Berkeley. University Microfilms, Inc., Ann Arbor, p 402Google Scholar
  86. Lindquist EE (1965) An unusual new species of Hoploseius Berlese (Acarina: Blattisociidae) from Mexico. Can Entomol 97(11):1121–1131Google Scholar
  87. Lindquist EE (1969) Mites and the regulation of bark beetle populations. In: Evans GO (ed) Proceedings of the 2nd international congress of acarology, Sutton Bonington, 19–25 July 1967. Akadémiai Kiadó, Budapest, pp 389–399Google Scholar
  88. Lindquist EE (1970) Relationships between mites and insects in forest habitats. Can Entomol 102:978–983Google Scholar
  89. Lindquist EE (1971) New species of Ascidae (Acrina: Mesostigmata) associated with forest insect pests. Can Entomol 103:919–942Google Scholar
  90. Lindquist EE (1995) Remarkable convergence between two taxa of ascid mites (Acari: Mesostigmata) adapted to living in pore tubes of bracket fungi in North America, with description of Mycolaelaps new genus. Can J Zool 73:104–128Google Scholar
  91. Lindquist EE, Evans GO (1965) Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem Entomol Soc Canada 47:1–64Google Scholar
  92. Lindquist EE, Hunter PE (1965) Some mites of the genus Proctolaelaps (Berlese) (Acarina: Blattisociidae) associated with forest insect pests. Can Entomol 97:15–32Google Scholar
  93. Lindquist EE, Walter DE (1989) Antennoseius (Vitzthumia) janus n.sp. (Acari: Ascidae), a mesostigmatic mite exhibiting adult female dimorphism. Can J Zool, Ottawa 67:1291–1310Google Scholar
  94. Lindquist EE, Krantz GW, Walter DE (2009) Order Mesostigmata. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 124–232Google Scholar
  95. Lo KC, Ho CC (1979) Ecological observations on rice tarsonemid mite, Steneotarsonemus spinki (Acarina: Tarsonemidae). J Agr Res China 28:181–192Google Scholar
  96. Lo KC, Ho CC (1984) Studies on the life history and predation of Lasioseius and its tolerance to some pesticides. Special Issue Taiwan Agr Res Inst 16:235–240 [in Chinese, with English abstract]Google Scholar
  97. Makarova OL (1995) On the association of gamasid mites of the genus Arctoseius (Mesostigmata, Ascidae) with winter crane flies (Diptera, Trichoceridae) in the northern Taimyr Peninsula. Arctic Insect News 6:2–5Google Scholar
  98. Mankau R, Imbriani JL (1978) Studies on the mite Lasioseius scapulatus a predator on soil nematodes. Nematropica 8:15Google Scholar
  99. Masan P, Perotti MA, Saloñas-Bordas MI, Braig HR (2013) Proctolaelaps euserratus, an ecologically unusual melicharid mite (Acari: Mesostigmata) associated with animal and human decomposition. Exp Appl Acarol 61:415–429PubMedGoogle Scholar
  100. Mashaya N (2002) Predation on the booklouse Liposcelis entomophila (Enderlein) by Blattisocius dentriticus (Berlese) and their susceptibility to deltamethrin and fenitrothion. Inscet Sci Appl 22:75–79Google Scholar
  101. Mathys G, Tencalla Y (1959) Note préliminaire sur la biologie et la valeur prédatice de Proctolaelaps hypudaei Oudms (Acarien: Mesostigmata: Aceosejidae). Stations Fédérales D’Essais Agricoles, Lausanne 600:645–654Google Scholar
  102. McMurtry JA, Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320Google Scholar
  103. Metwalli AM, Abbassy MRA, Montaser SA, Mowafy MH (1991) Life history of the ascid mite Proctolaelaps pygmaeus Muller when fed on two different preys. Al-Azhar J Agr Res 13:237–246Google Scholar
  104. Momen FM, Abou-Elela AM, Metwally AM, Naser AK, Saleh KHM (2011) Biology and feeding habits of the predacious mite, Lasioseius lindquisti (Acari: Ascidae) from Egypt. Acta Phytopathol Entomol Hungarica 46:151–163Google Scholar
  105. Moore JC, Walter DE (1988) Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–439Google Scholar
  106. Moraza ML, Lindquist EE (2011) A new genus of fungus-inhabitting blattisociid mites (Acari: Mesostigmata: Phytoseioidea) from Middle America, with a key to genera of the subfamily Blattisociinae. Zootaxa 2758:1–25Google Scholar
  107. Moustafa MA, El-Hady MM (2006) Biocontrol of some sclerotia forming fungi attacking green beans plant using two fungivorus mites and Trichoderma harzianum. J Agr Sci Mansoura Univ 31:3239–3245Google Scholar
  108. Mowafi MH (2005) Effect of food type on development and reproduction of mite species Lasioseius africanus Nasr (Acari: Ascidae). Egyptian J Biol Pest Contr 15:93–95Google Scholar
  109. Muma MH (1961) Mites associated with citrus in Florida. Bull Univ Fla Agr Exp Stn 640:39Google Scholar
  110. Naeem S, Dobkin DS, O’Connor BM (1985) Lasioseius mites (Acari: Gamasida: Ascidae) associated with hummingbird-pollinated flowers in Trinidad, West Indies. Int J Entomol 27:338–353Google Scholar
  111. Narita JPZ, Pédelabat M, Moraes GJ (2013) A new species of Neocypholaelaps Vitzthum (Acari: Ameroseiidae), with notes on the cheliceral lobes and ventral pore-like structures of mites of this family. Zootaxa 3666:1–15Google Scholar
  112. Nasr AK, Nawar MS, Mowafi MH (1990a) Biological studies and feeding habits of Lastoseius [sic] athiasae Nawar & Nasr (Acari: Mesostigmata: Ascidae) in Egypt. Bull Zool Soc Egypt 39:75–88Google Scholar
  113. Nasr AK, Nawar MS, Mowafi MH (1990b) Biological studies on Proctolaelaps bickleyi Bram (Acari: Gamasida: Ascidae). Bull Zool Soc Egypt 39:89–100Google Scholar
  114. Navasero MM, Hirao GA, Navasero MV, Santiago DR (2003) Predatory behavior of Proctolaelaps yinchuanensis Xue, Sui & Yi (Ascidae: Acarina). Philippine Entomol 17(2):185Google Scholar
  115. Navasero MM, Hirao GA, Santiago DR, Navasero MV, Raros LC (2004) Laboratory rearing technique for the predatory Proctolaelaps yinchuanensis Xue, Sui & Yi (Ascidae: Gamasida: Acari) using Suidasia pontifica Oudemans (Suidasiidae: Acaridae: Acari). Philippine Entomol 18(2):180Google Scholar
  116. Navia D, Gondim MGC Jr, Aratchige NS, Moraes GJ (2013) A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest. Exp Appl Acarol 59:67–94PubMedGoogle Scholar
  117. Nawar MS (1992) Life tables of Proctolaelaps deloni Nawar, Childers and Abou-Setta (Gamasida: Ascidae) at different temperatures. Exp Appl Acarol 13:281–285Google Scholar
  118. Nawar MS, El-Sherif AA (1992) Biological studies and description of developmental stages of Lasioseius zaheri Nasr (Acari: Ascidae). Ann Agr Sci Moshtohor 30:581–589Google Scholar
  119. Nawar MS, Nasr AK (1989) Biology of the ascid mite Protogamasellus primitivus similis Genis, Loots and Ryke with description of immature stages (Acari: Mesostigmata: Ascidae). Bull Fac Agr Cairo Univ 68:85–94Google Scholar
  120. Nawar MS, Rakha MA, Ali FS (1990) Laboratory studies on the predaceous mite, Lasioseius bispinosus Evans (Acari: Mesostigmata: Ascidae) on various kinds of food substances. Bull Entomol Soc Egypt 69:247–255Google Scholar
  121. Nesbitt HHJ (1951) A taxonomic study of the Phytoseiinae (family Laelaptidae) predaceous upon Tetranychidae of economic importance. Zoologische Verhandelingen, p 64 + 32 platesGoogle Scholar
  122. Nielsen PS (1998) Blattisocius tarsalis (Berlese), would this predatory mite be effective against moth eggs in Scandinavian flour mills? Integ Prot Stored Products IOBC Bull 21:83–87Google Scholar
  123. Nielsen PS (1999a) The impact of temperature on activity and consumption rate of moth eggs by Blattisocius tarsalis (Acari: Ascidae). Exp Appl Acarol 23:149–157Google Scholar
  124. Nielsen PS (1999b) The use of Blattisocius tarsalis (Acari: Ascidae) for biological control in flour mills. Proceedings of the 7th international working conference on stored-product protection, Beijing, 14–19 Oct 1998, vol 2, pp 1265–1268Google Scholar
  125. Nielsen PS (2001) Development of Blattisocius tarsalis (Acari: Ascidae) at different temperatures. Exp Appl Acarol 25:605–608PubMedGoogle Scholar
  126. Nielsen PS (2003) Predation by Blattisocius tarsalis (Berlese) (Acari: Ascidae) on eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J Stored Products Res 39:395–400Google Scholar
  127. Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio of insects and mites. Chapman & Hall Publications, New York, pp 8–99Google Scholar
  128. Novak V (1960) Die natürlichen Feinde und Krankheiten des gemeinen Nutzholzborkenkäfers Trypodendron lineatum Oliv. Zoologicke Listy Folia Zool 9:309–322Google Scholar
  129. O’Farrell AF, Butler PM (1948) Insects and mites associated with the storage and manufacture of foodstuffs in Northern Ireland. Econ Proc Royal Dublin Soc 3:343–407Google Scholar
  130. Oliveira DC, Moraes GJ, Dias CTS (2012) Status of Aceria guerreronis Keifer (Acari: Eriophyidae) as a pest of coconut in the state of Sao Paulo, southeastern Brazil. Neotropical Entomol 41:315–323Google Scholar
  131. Oudemans AC (1929) Acarologische Aanteekeningen C. Entomologischen Berichten 8:28–36Google Scholar
  132. Paciorek CJ, Moyer BR, Levin RA, Halpern SL (1995) Pollen consumption by the hummingbird flower mite Proctolaelaps kirmsei and possible fitness effects on Hamelia patens. Biotropica 27:258–262Google Scholar
  133. Pan JW (1985) Discovery of Blattisocius dentriticus and Blattisocius keegani in salted meet in stored houses. Entomol Knowledge 1985:263–264Google Scholar
  134. Reisen WK, Mullen GR (1978) Ecological observations on acarine associates (Acari) of Pakistan mosquitoes (Diptera: Culicidae). Entomol Exp Appl 7:769–776Google Scholar
  135. Rezk HA (2000) Mites associated with stored dried-dates in Egypt and the role of Blattisocius keegani Fox as biological control agent. Alexandria J Agr Res 45:179–191Google Scholar
  136. Riudavets J, Quero R (2003) Prey preference of the predatory mite Blattisocius tarsalis (Acari: Ascidae). Proceedings of the 8th international working conference on stored product protection, York, 22–29 July 2002, pp 297–299Google Scholar
  137. Riudavets J, Quero R (2004) Effect of relative humidity on the preimaginal development of Blattisocius tarsalis (Acari: Ascidae). Integ Prot Stored Products, IOBC Bull/wprs 27(9):177–180Google Scholar
  138. Riudavets J, Maya M, Monserrat M (2002a) Predation by Blattosocius tarsalis (Acari: Ascidae) on stored product pests. Bull OILB/SROP 25(3):121–126Google Scholar
  139. Riudavets J, Pons MJ, Lucas E (2002b) Insects and mites of stored products in the northeast of Spain. Integ Prot Stored Products, IOBC Bull 25:41–44Google Scholar
  140. Rivard I (1960) A technique for individual rearing of the predacious mite Melichares dentriticus (Berlese) (Acarina: Aceosejidae) with notes on its life history and behaviour. Can Entomol 92:834–839Google Scholar
  141. Rivard I (1962a) Influence of humidity on the predaceous mite Melichares dentriticus (Berlese) (Acarina: Aceosejidae). Can J Zool 40:761–766Google Scholar
  142. Rivard I (1962b) Some effects of prey density on survival, speed of development, and fecundity of the predaceous mite Melichares dentriticus (Berl.) (Acarina: Aceosejidae). Can J Zool 40:1233–1236Google Scholar
  143. Rosa AA, Gondim MGC Jr, Fiaboe KKM, Moraes GJ, Knapp M (2005) Predatory mites associated with Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) on native solanaceous plants of coastal Pernambuco State, Brazil. Neotropical Entomol 3494:689–692Google Scholar
  144. Rudzinska M (1998) Life history of the phoretic predatory mite Arctoseius semiscissus (Acari: Ascidae) on a diet of sciarid fly eggs. Exp Appl Acarol 22:643–648Google Scholar
  145. Ruf A (1996) Life-history patterns in soil-inhabiting mesostigmatid mites (Dermanyssina: Parasitina). In: Mitchell R, Horn DJ, Needham GR, Welbourn WC (eds) Acarology IX. Proceedings, Columbus, 17–22 July 1994, vol 1, pp 621–628Google Scholar
  146. Russo G (1938) VI. Contributo alla conoscenza dei coleotteri scolitidi. Fleotribo: Phloeotribus scarabaeoides (Bern.) Fauv. Parte Seconda. Biografia, simbionti, danni e lotta. Bollettino del Laboratorio di Entomologia Agraria di Portici 2:1–420Google Scholar
  147. Saber SA, El-Laithy AYM, Korayem AM (2007) Biology of the predaceous mite, Protogamasellus denticus Nasr (Mesostigmata: Ascidae) feeding on different nematode diets. Int J Nematol 17:17–20Google Scholar
  148. Saloña MI, Moraza L, Carles-Tolrá M, Iraola V, Bahillo P, Yélamos T, Outerelo R, Alcaraz R (2010) Searching the soil: forensic importance of edaphic fauna after the removal of a corpse. J Forensic Sci 55:1652–1655PubMedGoogle Scholar
  149. Sardar MA, Murphy PH (1987) Feeding tests of grassland soil-inhabiting gamasine predators. Acarologia 28:117–121Google Scholar
  150. Sheeja UM, Ramani N (2009) Feeding potential of Lasioseius sp. (Acari: Mesostigmata), a promising predator of the red palm mite, Raoiella indica Hirst (Acari: prostigmata) ecosystem. Karnataka J Agr Sci 22:698–700Google Scholar
  151. Shereef GM, Zaher MA, Afifi AM (1980) Biological studies and feeding habits of Proctolaelaps pygmaeus (Muller) (Mesostigmata: Ascidae) in Egypt. First Conference of the Plant Protection Research Institute, Cairo 3:169–181Google Scholar
  152. Simmons AM, Mahroof RM (2011) Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to vapor pressure deficit: oviposition, immature survival, and body size. Ann Entomol Soc Am 104:928–934Google Scholar
  153. Smith BP (1983) The potential of mites as biological control agents of mosquitoes. In: Hoy MA, Cunningham GL, Knutson L (eds) Proceedings of biological control of pests by mites. University of California, Berkeley, 1982, pp 79–85Google Scholar
  154. Stein W (1960) Untersuchungen über die Möglichkeit einer Bekämpfung von Raubmilben (Blattisocius tenivorus) in Zuchten der Getreidemotte (Sitotroga cerealella (Oliv.)) durch Anwendung von Akariziden. Zeitschrift fur Pflanzenkrankheiten, Pflanzenpathologie und Pflanzenchutz 67:77–87Google Scholar
  155. Sznajder B, Sabelis MW, Egas M (2010) Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour. J Chem Ecol 36:680–688PubMedCentralPubMedGoogle Scholar
  156. Taha HA, Mohmoud MA (2007) Description and biological studies on the predatory mite Proctolaelaps naggari n.sp (Acari: Ascidae: Gamasida). In: Abstracts, Fourth African Acarology Symposium, Hammamet, Tunisia, 22–26 Oct, African Acarology Association. Accessed 18 Apr 2014
  157. Taha HA, Metwally AM, Atwa W, El-Sanady M (2007) Biological and prediction studies on the two acarine predators Lasioseius sewai Nasr & Abou-Awad and Blattisocius keegani Fox fed on the grain mite Tyrophagus putrescentiae (Acari: Acaridae). Egyptian J Agr Res 85:1659–1668Google Scholar
  158. Thind BB, Ford HL (2006) Laboratory studies on the use of two new arenas to evaluate the impact of the predatory mites Blattisocius tarsalis and Cheyletus eruditus on residual populations of the stored product mite Acarus siro. Exp Appl Acarol 38:167–180PubMedGoogle Scholar
  159. Thomas HQ, Zalom FG, Nicola NL (2011) Laboratory studies of Blattisocius keegani (Fox) (Acari: Ascidae) reared on eggs of navel orangeworm: potential for biological control. Bull Entomol Res 101:499–504PubMedGoogle Scholar
  160. Throne JE, Hagstrum DW, Nawrot J (1998) Computer model for simulating almond moth (Lepidoptera: Pyralidae) population dynamics. Environ Entomol 27:344–354Google Scholar
  161. Treat A (1966) A new Blattisocius from noctuid moths. J NY Entomoll Soc 74:143–159Google Scholar
  162. Treat A (1969) Behavorial aspects of the association of the mites with noctuid moths. In: Proceedings of the 2nd international congress of acarology, Sutton Bonington, Akadémiai Kiadó, Budapest, 19–25 July 1967, pp 275–286Google Scholar
  163. Treat A (1975) Mites of moths and butterflies. Comstock Publishing Associates, Ithaca, p 362Google Scholar
  164. Trivedi TP, Rajagopal D, Tandon PL (1994) Life table for establishment of potato tuber moth, Phthorimaea operculella. J Indian Potato Assoc 21:97–105Google Scholar
  165. Tseng YH (1984) Mites associated with weeds, paddy rice, and upland rice fields in Taiwan. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 2. Ellis Horwood Publisers, Chichester, pp 770–780Google Scholar
  166. Tseng YH (1989) Taxonomical studies on mites associated with weeds, paddy rice and upland rice fields in Taiwan (I). Chinese J Entomol 3:1–35Google Scholar
  167. van de Bund CF (1970) Gamasides as predators of phytophagous nematodes. In: Bozek J, Suski ZW, Jakubowska J (eds) Problems of acarology, symposium. Polska Akademia Nauk, Warszawa, p 280Google Scholar
  168. van de Bund CF (1972) Enkele waarnemingen aan Lasioseius fimetorum Karg, 1971 in een gezelschap van mijten, springstaarten en nematoden tussen de wortels van witte klaver. Entomologische Berichten 32:6–12Google Scholar
  169. Voigts H, Oudemans AC (1905) Zur Kenntnis der Milben-Fauna von Bremen. Abhandlungen. Naturwissenschaftlichen Verein zu Bremen, Bremen 18:199–253Google Scholar
  170. Walter DE (1987) Life history, trophic behavior, and description of Gamasellodes vermivorax n. sp. (Mesostigmata: Ascidae), a predator of nematodes and arthropods in semiarid grassland soils. Can J Zool Ottawa 65:1689–1695Google Scholar
  171. Walter DE (2003) The genus Gamasellodes (Acari: Mesostigmata: Ascidae): New Australian and North American species. Syst Appl Acarol (Special Publications, London) 15:1–10Google Scholar
  172. Walter DE, Ikonen EK (1989) Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J Nematol 21:315–327PubMedCentralPubMedGoogle Scholar
  173. Walter DE, Kaplan DT (1990) A guild of thelytokous mites (Acari: Mesostigmata) associated with citrus roots in Florida. Environ Entomol 19:1338–1343Google Scholar
  174. Walter DE, Lindquist EE (1989) Life history and behavior of mites in the genus Lasioseius (Acari: Mesostigmata: Ascidae) from grassland soils in Colorado, with taxonomic notes and description of a new species. Can J Zool 67:2797–2813Google Scholar
  175. Walter DE, Lindquist EE (1995) The distributions of parthenogenetic ascid mites (Acari: Parasitiformes) do not support the biotic uncertainty hypothesis. Exp Appl Acarol 19:423–442Google Scholar
  176. Walter DE, Lindquist EE (2000) Arrhenoseius gloriosus n.g., n.sp. (Acari: Mesostigmata: Ascidae), an arrhenotokous mite from rainforests in Queensland, Australia. Acarologia 41:53–68Google Scholar
  177. Walter DE, Halliday RB, Lindquist EE (1993) A review of the genus Asca (Acarina: Ascidae) in Australia, with descriptions of three new leaf-inhabiting species. Invertebr Taxon 7:1327–1347Google Scholar
  178. Weis-Fogh T (1948) Ecological investigations on mites and collemboles in the soil. Natura Jutlandic 1:135–270Google Scholar
  179. Weisser WW, Zhang Z-Q (1996) Infestation of Drosophila cultures (Diptera: Drosophilidae) by mites of Proctolaelaps (Acari: Ascidae) and experiments on mite feeding habits. Syst Appl Acarol 1:41–44Google Scholar
  180. Wu W-N, Wang C-L (1982) A new species of Gnorimus from Fujian (Acarina: Phythoseiidae). Wuyi Sci J 2:134–136Google Scholar
  181. Wu Z-Y, Zhang X-H, Luo J, Fang K-H (2009) Effects of five preys on growth and reproduction of Lasioseius sp. J Fujian Agr For Univ (Nat Sci Ed) 38:581–584Google Scholar
  182. Xu X (2011) Study on the biology and application of Lasioseius sp.. MS thesis presented to Fujian Agriculture and Forestry University. Available via DIALOG. Accessed 14 Apr 2014
  183. Yaninek JS, Hanna R (2003) Cassava green mite in Africa – a unique example of successful biological control of a mite pest on a continental scale. In: Borgemeister C, Langewald J, Neuenschwander P (eds) Biological control in IPM systems in Africa. CABI Publishing, Wallingford, pp 61–75Google Scholar
  184. Zhang Z-Q, Fan Q-H (2010) Blattisociidae of China. Zoosymposia 4:280–287Google Scholar
  185. Zhang YX, Lin J-Z (1986) Identification of phytoseiids—the four species of natural enmies [sic] for controling [sic] tarsonemids on rice. Entomol Knowledge 23:83–85Google Scholar
  186. Zhang Y-X, Lin J-Z (1989) Role of Gnorimus chaudhrii (Acari: Phytoseiidae) in controlling tarsonemid mite in paddy fields in China. Indian J Acarol 10:83–86Google Scholar
  187. Zhang Y, Lin J (1991) Studies of Gnorimus chaudhrii (Acari: Phytoseiidae), an important predator of tarsonemid mites in rice fields. Chinese J Biol Contr 7:163–165Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gilberto José de Moraes
    • 1
    Email author
  • Renan Venancio
    • 1
  • Victor L. V. dos Santos
    • 1
  • Adilson D. Paschoal
    • 1
  1. 1.Departamento de Entomologia e AcarologiaEscola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloPiracicabaBrazil

Personalised recommendations