Advertisement

Development and Assessment of Cooperative V2X Applications for Emergency Vehicles in an Urban Environment Enabled by Behavioral Models

  • Florian WeinertEmail author
  • Michael Düring
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

Statistically, emergency vehicles (EVs) encounter a higher risk of getting involved in accidents during their missions than other road users. The successful completion of these missions can be facilitated by new applications. Simulations may support the development of applications, as it is not possible to test them in a real traffic system. Simulation of Urban Mobility (SUMO) is one possible tool to conduct simulations of real traffic systems. However, SUMO is not capable of modelling a realistic behavior of EVs, new types of infrastructure, and individual vehicles (IVs) concerning EVs by a predefined function. We propose models for each of the missing pieces towards an integrated approach to simulate EVs in an urban environment. Therefore, we adjust them with a video analysis and simulate them. Further, an assessment analyzes their usability as a reference for testing new applications. In order to identify supportive applications, we created and carried out a survey with 252 EV drivers. The deduced applications are a traffic light preemption via V2I and an automated formation of a rescue lane via V2V. We assess the models and applications by evaluating the travelling time, a speed profile of the EV, and speed profiles of the IVs. Additionally, we show the usefulness of the two applications for the EV as well as the IVs.

Keywords

Simulation of an emergency vehicle Simulation of EVs Urban Intersection Real EV behavior Rescue lane Intelligent transportation system Intelligent traffic light V2X Preemption Automated formation of a rescue lane Travelling time 

References

  1. 1.
    Bundesanstalt für Strassenwesen (2011) Leistungen des Rettungsdienstes 2008/09. In: Berichte der Bundesanstalt für Straßenwesen—Mensch und Sicherheit 217Google Scholar
  2. 2.
    Niedersachs GVBl (1993) Verordnung über die Bemessung des Bedarfs an Einrichtungen des Rettungsdienstes (BedarfVO-RettD). p 1Google Scholar
  3. 3.
    Bycraft J (2000) Green light pre-emption of traffic signals for emergency vehicles. Technical report on City of Richmond traffic signal control systemGoogle Scholar
  4. 4.
    Cetin M, Jordan CA (2012) Making way for emergency vehicles at oversaturated signals under vehicle-to-vehicle communications. In: IEEE international conference on vehicular electronics and safety (ICVES), pp 279–284Google Scholar
  5. 5.
    Traffic signal preemption for emergency vehicles. Technical report, U.S. Department of Transportation (2006)Google Scholar
  6. 6.
    Traffic signal priority control for emergency vehicle preemption. Technical report on Global Traffic Technologies, LLC, (2011)Google Scholar
  7. 7.
    Kahn C, Pirrallo R, Kuhn E (2001) Characteristics of fatal ambulance crashes in the United States: an 11-year retrospective analysis. In: Prehospital emergency care 5, pp 261–269Google Scholar
  8. 8.
    Müller D (2007) Typische Gefahren bei Einsatzfahrten des Rettungsdienstes. Technical report, Institut für Verkehrsrecht und Verkehrsverhalten BautzenGoogle Scholar
  9. 9.
    Eltayeb AS, Almubarak HO, Attia TA (2013) A GPS based traffic light pre-emption control system for emergency vehicles. In: International conference on computing, electrical and electronics engineering (ICCEEE), pp 724–729Google Scholar
  10. 10.
    Krajzewicz D et al (2012) Recent development and applications of SUMO—simulation of urban mobility. Int J Adv Syst Meas 5(3, 4):128–138Google Scholar
  11. 11.
    McHale G, Collura J (2002) Improving emergency vehicle traffic signal priority system assessment methodologies. Technical report, Federal Highway Administration and Virginia Polytechnic Institute and State UniversityGoogle Scholar
  12. 12.
    Zhang L et al (2010) Simulation modeling and application with emergency vehicle presence in CORSIM. Technical report, Mississippi State University and Turner-Fair Bank Highway Research CenterGoogle Scholar
  13. 13.
    Bieker L (2011) Emergency vehicle prioritization using vehicle-to-infrastructure communication. Technical report, German Aerospace Center—Institute of Transportation SystemsGoogle Scholar
  14. 14.
    During M, Pascheka P (2014) Cooperative decentralized decision making for conflict resolution among autonomous agents. In: IEEE international symposium on innovations in intelligent systems and applications (INISTA) proceedings, pp 154–161, 23–25 June 2014  10.1109/INISTA.2014.6873612
  15. 15.
    Bundesanzeiger Verlag. Verordnung zur Neufassung der Strassenverkehrs-Ordnung (StVO). Bundesminisiterium der Justiz, (2013)Google Scholar
  16. 16.
    Düring M, Gonter M, Thiel F, Weinert F (2014) Models enabling simulations of V2X applications regarding emergency vehicles in urban environment. In: SUMO2014—modeling mobility with open data, S. 55–75. ISSN:1866-721XGoogle Scholar
  17. 17.
    Buchenscheit A et al (2009) A VANET-based emergency vehicle warning system. In: IEEE vehicular networking conference (VNC), pp 1–8Google Scholar
  18. 18.
    Arbeitsgruppe Verkehrsmanagement, ed. Richtlinien für Lichtsignalanlagen. Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) Verlag (2010)Google Scholar
  19. 19.
    Bosserhoff D (2010) Handbuch für Verkehrssicherheit und Verkehrstechnik der Hessischen Straßen- und Verkehrsverwaltung. In: Follmann J (ed) Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV), Chap. Knotenpunkte mit Lichtsignalanlagen, pp 4.5–1–4.5.131Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Volkswagen AGWolfsburgGermany

Personalised recommendations