Can Road Traffic Volume Information Improve Partitioning for Distributed SUMO?

  • Ulrich Dangel
  • Quentin BragardEmail author
  • Patrick McDonagh
  • Anthony Ventresque
  • Liam Murphy
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


Microscopic vehicular simulations can be computationally intensive due to the sheer size of the road network and number of vehicles. One solution is to parallelize the simulation through distribution and concurrent execution of the scenario being simulated. To enable distributed simulation of an area, the partitioning of the map into different areas for parallel execution on different nodes is required. How the map is partitioned is also a critical factor for distributed simulation, as a poor partitioning can lead to a communication overhead and/or an imbalance of workload among the computing nodes. In this paper, we ask: Can traffic volume information improve the classical structural partitioning algorithms? In the context of improving distributed simulation in SUMO, we propose a modification to three existing mechanisms for road network partitioning, SParTSim, Smart Quadtrees and Quadtrees, with the aim of creating more balanced partitions (in terms of workload) derived from traffic volume data.


Distributed simulation Road partitioning Graph partitioning SUMO 



This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre (


  1. 1.
    Abbott J (2013) State of the world’s cities: prosperity of cities, Australian Planner, pp 1–2Google Scholar
  2. 2.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392CrossRefMathSciNetGoogle Scholar
  3. 3.
    Soares G, Macedo J, Kokkinogenis Z, Rossetti RJ (2013) An integrated framework for multi-agent traffic simulation using SUMO and JADE. In: SUMO2013, The first SUMO user conference, 15–17 May 2013—Berlin-Adlershof, Germany, pp 125–131Google Scholar
  4. 4.
    Bellifemine F, Bergenti F, Caire G, Poggi A (eds) (2005) JADE—a java agent development framework. Multi-agent programming, Springer, pp 125–147Google Scholar
  5. 5.
    Bragard Q, Ventresque A, Murphy L (2013) dSUMO: towards a distributed SUMO. In: SUMO2013, The first SUMO user conference, 15–17 May 2013—Berlin-Adlershof, GermanyGoogle Scholar
  6. 6.
    Ventresque A, Bragard Q, Liu ES, Nowak D, Murphy L, Theodoropoulos G et al (2012) SParTSim: a space partitioning guided by road network for distributed traffic simulations. In: Proceedings of the 2012 IEEE/ACM 16th international symposium on distributed simulation and real time applications, pp 202–209Google Scholar
  7. 7.
    Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Informatica 4:1–9CrossRefzbMATHGoogle Scholar
  8. 8.
    Wang Y, Lees M, Cai W (2012) Grid-based partitioning for large-scale distributed agent-based crowd simulation. In: Proceedings of the winter simulation conference, p 241Google Scholar
  9. 9.
    Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51:107–113CrossRefGoogle Scholar
  10. 10.
    Amanatides J Woo A (1987) A fast voxel traversal algorithm for ray tracing. In: proceedings of EUROGRAPHICS, pp 3–10Google Scholar
  11. 11.
    Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning trees. Image Process IEEE Trans 5:1610–1624CrossRefGoogle Scholar
  12. 12.
    Torres E (1990) Optimization of the binary space partition algorithm (BSP) for the visualization of dynamic scenes. In: Eurographics, pp 507–518Google Scholar
  13. 13.
    Steed A, Abou-Haidar R (2003) Partitioning crowded virtual environments. In: Proceedings of the ACM symposium on virtual reality software and technology, pp 7–14Google Scholar
  14. 14.
    Freisleben B, Hartmann D, Kielmann T (1997) Parallel raytracing: a case study on partitioning and scheduling on workstation clusters. In: Proceedings of the thirtieth hawaii international conference on system sciences, 1997, pp 596–605Google Scholar
  15. 15.
    Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 269–274Google Scholar
  16. 16.
    Pothen A, Simon HD, Liou K-P (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal Appl 11:430–452CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hendrickson B, Leland R (1995) An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J Sci Comput 16:452–469CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307CrossRefzbMATHGoogle Scholar
  19. 19.
    Fjällström PO (1998) Algorithms for graph partitioning: a survey. linköping electron art comput inf sci 3(10):1–37Google Scholar
  20. 20.
    Hendrickson B, Leland RW (1995) A multi-level algorithm for partitioning graphs. SC 95:28Google Scholar
  21. 21.
    Andreev K, Racke H (2006) Balanced graph partitioning. Theor Comput Syst 39:929–939CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans Very Large Scale Integr VLSI Syst 7:69–79CrossRefGoogle Scholar
  23. 23.
    Lowrie P (1990) Scats, sydney co-ordinated adaptive traffic system: a traffic responsive method of controlling urban trafficGoogle Scholar
  24. 24.
  25. 25.
    Simpson EH (1949) Measurement of diversity. Nature 163:688Google Scholar
  26. 26.
    Varschen C, Wagner P (2006) Mikroskopische modellierung der personenverkehrsnachfrage auf basis von zeitverwendungstagebüchern. Stadt Reg Land 81:63–69Google Scholar
  27. 27.
    Boukerche A, Das SK (1997) Dynamic load balancing strategies for conservative parallel simulations. In: Proceedings of 11th workshop on parallel and distributed simulation, 1997, pp 20–28Google Scholar
  28. 28.
    Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J et al (2005) New challenges in dynamic load balancing. Appl Numer Math 52:133–152CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ulrich Dangel
    • 1
  • Quentin Bragard
    • 1
    Email author
  • Patrick McDonagh
    • 2
  • Anthony Ventresque
    • 1
  • Liam Murphy
    • 1
  1. 1.Lero@UCD, School of Computer Science and InformaticsUniversity College DublinDublinIreland
  2. 2.Lero@DCU, School of Electronic EngineeringDublin City UniversityDublinIreland

Personalised recommendations