How to Talk to Each Other via Computers: Semantic Interoperability as Conceptual Imitation

  • Simon ScheiderEmail author
  • Werner Kuhn
Part of the Synthese Library book series (SYLI, volume 359)


What exactly does interoperability mean in the context of information science? Which entities are supposed to interoperate, how can they interoperate, and when can we say they are interoperating? This question, crucial to assessing the benefit of semantic technology and information ontologies, has been understood so far primarily in terms of standardization, alignment and translation of languages. In this article, we argue for a pragmatic paradigm of interoperability understood in terms of conversation and reconstruction. Based on examples from geographic information and land cover classification, we argue that semantic heterogeneity is to a large extent a problem of multiple perspectives. It therefore needs to be addressed not by standardization and alignment, but by articulation and reconstruction of perspectives. Reconstruction needs to be grounded in shared operations. What needs to be standardized is therefore not the perspective on a concept, but the procedure to arrive at different perspectives. We propose conceptual imitation as a synthetic learning approach, and conceptual spaces as a constructive basis. Based on conceptual imitation, information provider and user concepts can be checked for perspectival correspondence.


Conceptual Space Convex Region Human Speech Semantic Interoperability Constructive Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A draft of the ideas in this article was presented at the EarthScienceOntolog session-3 at 10/11/2012.22 Research was funded by the International Research Training Group on Semantic Integration of Geospatial Information (DFG GRK 1498), and by the research fellowship grant DFG SCHE 1796/1-1. We thank Helen Couclelis, Benjamin Adams, Krzysztof Janowicz and MUSIL23 for discussions that helped shape this article.


  1. Adams, B., & Janowicz, K. (2011). Constructing geo-ontologies by reification of observation data. In Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems, GIS ’11, Chicago (pp. 309–318). New York: ACM.Google Scholar
  2. Adams, B., & Raubal, M. (2009). A metric conceptual space algebra. In K. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Proceedings of spatial information theory, 9th international conference, COSIT 2009, Aber Wrac’h, September 21–25, 2009 (pp. 51–68). Berlin: Springer.Google Scholar
  3. Austin, J. (1953). How to talk. Some simple ways. In Proceedings of the Aristotelian society (Vol. 53, pp. 227–246).Google Scholar
  4. Baglatzi, A., & Kuhn, W. (2013). On the formulation of conceptual spaces for land cover classification systems. In Geographic information science at the heart of Europe (pp. 173–188). Cham/New York: Springer.CrossRefGoogle Scholar
  5. Beule, J. D., & Steels, L. (2005). Hierarchy in fluid construction grammars. In KI, Koblenz (pp. 1–15).Google Scholar
  6. Booth, D. (2006). URIs and the Myth of Resource Identity.
  7. Both, A., Kuhn, W., & Duckham, M. (2013). Spatiotemporal Braitenberg vehicles. In 21st SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL 2013, Orlando, November 5–8, 2013 (pp. 74–83). ACM.Google Scholar
  8. Braitenberg, V. (1986). Vehicles. Experiments in synthetic psychology. Cambridge: MIT.Google Scholar
  9. Brodaric, B. (2007). Geo-pragmatics for the geospatial semantic web. Transactions in GIS, 11(3), 453–477.CrossRefGoogle Scholar
  10. Brodaric, B., & Gahegan, M. (2007). Experiments to examine the situated nature of geoscientific concepts. Spatial Cognition & Computation, 7(1), 61–95.CrossRefGoogle Scholar
  11. Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In A. Frank, I. Campari, & U. Formentini (Eds.), Spatio-temporal reasoning (pp. 65–77). Berlin/Heidelberg: Springer.Google Scholar
  12. Couclelis, H. (2010). Ontologies of geographic information. International Journal of Geographical Information Science, 24(12), 1785–1809.CrossRefGoogle Scholar
  13. Euzenat, J., & Shvaiko, P. (2007). Ontology matching. New York/Secaucus: Springer.Google Scholar
  14. Frank, A. (2009). Scale is introduced in spatial datasets by observation processes. In Spatial data quality. From process to decision (6th ISSDQ 2009), St. John’s (pp. 17–29). CRC Press.Google Scholar
  15. Gärdenfors, P. (2000). Conceptual spaces – The geometry of thought. Cambridge: MIT.Google Scholar
  16. Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A., DeWitt, D., & Heber, G. (2005). Scientific data management in the coming decade. CoRR abs/cs/0502008.Google Scholar
  17. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics: Speech acts (Vol. 3, pp. 41–58). San Diego: Academic.Google Scholar
  18. Guarino, N. (1998). Formal ontology and information systems. In N. Guarino (Ed.), Formal ontology in information systems: Proceedings of the first international conference (FOIS ’98), Trento, June 6–8 (Frontiers in artificial intelligence and applications, Vol. 46). Amsterdam: IOS-Press [u.a.].Google Scholar
  19. Halpin, H. (2013). Social semantics – The search for meaning on the web (Semantic web and beyond, Vol. 13). New York: Springer.Google Scholar
  20. Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.CrossRefGoogle Scholar
  21. Harvey, F., Kuhn, W., Pundt, H., Bishr, Y., & Riedemann, C. (1999). Semantic interoperability: A central issue for sharing geographic information. The Annals of Regional Science, 33,213–232.CrossRefGoogle Scholar
  22. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.CrossRefGoogle Scholar
  23. Hyvönen, E. (2012). Publishing and using cultural heritage linked data on the semantic web (Synthesis lectures on the semantic web). San Rafael: Morgan & Claypool Publishers.Google Scholar
  24. Janich, P. (2006). Was ist Information? Kritik einer Legende. Frankfurt a. M.: Suhrkamp.Google Scholar
  25. Janowicz, K. (2012). Observation-driven geo-ontology engineering. Transactions in GIS, 16(3), 351–374.CrossRefGoogle Scholar
  26. Janowicz, K., & Hitzler, P. (2012). The digital earth as knowledge engine. Semantic Web Journal, 3(3), 213–221.Google Scholar
  27. Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial semantics and linked spatiotemporal data – Past, present, and future. Semantic Web, 3(4), 321–332.Google Scholar
  28. Johnson-Laird, P. (1997). Procedural semantics. Cognition, 5, 189–214.CrossRefGoogle Scholar
  29. Kamlah, W., & Lorenzen, P. (1996). Logische Propädeutik. Vorschule des vernünftigen Redens (3rd ed.). Stuttgart/Weimar: J.B. Metzler.Google Scholar
  30. Köhler, W. (1992). Gestalt psychology. An introduction to new concepts in modern psychology. New York: Liveright.Google Scholar
  31. Kuhn, W. (2003). Semantic reference systems. International Journal of Geographical Information Science, 17 (5), 405–409.CrossRefGoogle Scholar
  32. Lehar, S. (2003). The world in your head. A gestalt view of the mechanism of conscious experience. Mahwah/London: Lawrence Erlbaum Associates.Google Scholar
  33. Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.CrossRefGoogle Scholar
  34. Lund, H. G. (2006). Guide for classifying lands for greenhouse gas inventories. Journal of Forestry, 104(4), 211–216.Google Scholar
  35. Lund, H. (2012). Definitions of forest, deforestation, reforestation and afforestation. Technical report, Forest Information Services, Gainesville.
  36. Madin, J. S., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa, F. (2007). An ontology for describing and synthesizing ecological observation data. Ecological Informatics, 2(3), 279–296.CrossRefGoogle Scholar
  37. Mark, D. M. (1993). Toward a theoretical framework for geographic entity types. In A. U. Frank & I. Campari (Eds.), Spatial information theory a theoretical basis for GIS (Lecture notes in computer science, Vol. 716, pp. 270–283). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  38. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Oltramari, A. (2003). Wonderweb deliverable d18: Ontology library. Trento.Google Scholar
  39. Mitchell, T. (1980). The need for biases in learning generalizations (Cbm-tr 5-110). Rutgers University.Google Scholar
  40. Nipkow, T., Wenzel, M., Paulson, L. C. (2002). Isabelle/HOL: A proof assistant for higher-order logic. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  41. Quine, W. (1951). Two dogmas of empiricism. The Philosophical Review, 60, 20–43.CrossRefGoogle Scholar
  42. Quine, W. (1974). The roots of reference. La Salle: Open Court Publishing.Google Scholar
  43. Quine, W. (2001). Word and object (24th ed.). Cambridge: MIT.Google Scholar
  44. Riedemann, C., & Kuhn, W. (1999). What are sports grounds? Or: Why semantics requires interoperability. In A. Vckovski, K. E. Brassel, & H. J. Schek (Eds.), Interoperating geographic information systems (Lecture notes in computer science, Vol. 1580, pp. 217–229). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  45. Sauser, E. L., & Billard, A. G. (2005). View sensitive cells as a neural basis for the representation of others in a self-centered frame of reference. In 3rd international symposium on imitation in animals & artifacts, Hatfield (pp. 119–127).Google Scholar
  46. Scarantino, A. (2003). Affordances explained. Philosophy of Science, 70, 949–961.CrossRefGoogle Scholar
  47. Scheider, S. (2012). Grounding geographic information in perceptual operations (Frontiers in artificial intelligence and applications, Vol. 244). Amsterdam: IOS Press.Google Scholar
  48. Scheider, S., & Kuhn, W. (2010). Affordance-based categorization of road network data using a grounded theory of channel networks. International Journal of Geographical Information Science, 24(8), 1249–1267.CrossRefGoogle Scholar
  49. Scheider, S., & Kuhn, W. (2011). Finite relativist geometry grounded in perceptual operations. In M. Egenhofer, N. Giudice, R. Morath, & M. Worboys (Eds.), Spatial information theory: 10th international conference, COSIT 2011, Belfast (Lecture notes in computer science, Vol. 6899, pp. 304–327). Berlin: Springer.CrossRefGoogle Scholar
  50. Scheider, S., & Stasch, C. (2015, forthcoming). The semantics of sensor observations based on attention. In G. Marchetti, G. Benedetti, & A. Alharbi (Eds.), Attention and meaning: The attentional basis of meaning. New York: Nova.Google Scholar
  51. Shirky, C. (2009). Ontology is overrated.
  52. Steels, L. (1997). Constructing and sharing perceptual distinctions. In M. Someren & G. Widmer (Eds.), Machine learning: ECML-97 (Lecture notes in computer science, Vol. 1224, pp. 4–13), Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  53. Steels, L. (2002). Grounding symbols through evolutionary language games. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 211–226). New York: Springer.CrossRefGoogle Scholar
  54. Steels, L. (2003). Social language learning. In M. Tokoro & L. Steels (Eds.), The future of learning (pp. 133–162). Amsterdam: MIT.Google Scholar
  55. Steels, L. (2008). The symbol grounding problem has been solved. So what’s next? In M. de Vega (Ed.), Symbols and embodiment: Debates on meaning and cognition, chap 12. Oxford: Oxford University Press.Google Scholar
  56. Stuckenschmidt, H., & van Harmelen, F. (2003). Information sharing on the semantic web. Heidelberg: Springer.Google Scholar
  57. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge: Harvard University Press.Google Scholar
  58. Wittgenstein, L. (2003). Philosophische Untersuchungen. Frankfurt a. M.: Suhrkamp.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für GeoinformatikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations