A Cognitive Architecture for Music Perception Exploiting Conceptual Spaces

  • Antonio ChellaEmail author
Part of the Synthese Library book series (SYLI, volume 359)


A cognitive architecture for a musical agent is presented. The architecture extends and complete an architecture for computer vision previously developed by the author by taking into account many relationships between vision and music perception. The focus of the agent architecture is an intermediate conceptual area between the subconceptual and linguistic areas. A conceptual space for the perception of tones and intervals is thus presented, based on the dissonance measure of the tones. Problems and future works of the proposed approach are finally discussed.


Static Perception Conceptual Space Cognitive Architecture Critical Band Complex Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bååth, R., Lagerstedt, E., & Gärdenfors, P. (2013). An oscillator model of categorical rhythm perception. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society, Berlin (pp. 1803–1808). Austin: Cognitive Science Society.Google Scholar
  2. Bharucha, J. (1987). Music cognition and perceptual facilitation: A connectionist framework. Music Perception: An Interdisciplinary Journal, 5(1), 1–30.CrossRefGoogle Scholar
  3. Bharucha, J. (1991). Pitch, harmony and neural nets: A psychological perspective. In P. Todd & D. Loy (Eds.), Music and connectionism (pp. 84–99). Cambridge: MIT.Google Scholar
  4. Boden, M. (2004). The creative mind: Myths and mechanisms (2nd ed.). London: Routledge.Google Scholar
  5. Bregman, A. (1994). Auditory scene analysis – The perceptual organization of sound. Cambridge: MIT/Bradford Book.Google Scholar
  6. Camurri, A., Frixione, M., & Innocenti, C. (1994). A cognitive model and a knowledge representation system for music and multimedia. Journal of New Music Research, 23, 317–347.CrossRefGoogle Scholar
  7. Camurri, A., Catorcini, A., Innocenti, C., & Massari, A. (1995). Music and multimedia knowledge representation and reasoning: The HARP system. Computer Music Journal, 19(2), 34–58.CrossRefGoogle Scholar
  8. Chalupsky, H., MacGregor, R., & Russ, T. (2010). PowerLoom manual. Marina Del Rey: University of Southern California.Google Scholar
  9. Chella, A., Frixione, M., & Gaglio, S. (1997). A cognitive architecture for artificial vision. Artificial Intelligence, 89, 73–111.CrossRefGoogle Scholar
  10. Chella, A., Frixione, M., & Gaglio, S. (1998). An architecture for autonomous agents exploiting conceptual representations. Robotics and Autonomous Systems, 25(3–4), 231–240.CrossRefGoogle Scholar
  11. Chella, A., Frixione, M., & Gaglio, S. (2000). Understanding dynamic scenes. Artificial Intelligence, 123, 89–132.CrossRefGoogle Scholar
  12. Chella, A., Gaglio, S., & Pirrone, R. (2001). Conceptual representations of actions for autonomous robots. Robotics and Autonomous Systems, 34, 251–263.CrossRefGoogle Scholar
  13. Chella, A., Frixione, M., & Gaglio, S. (2003). Anchoring symbols to conceptual spaces: the case of dynamic scenarios. Robotics and Autonomous Systems, 43(2–3), 175–188.CrossRefGoogle Scholar
  14. Chella, A., Frixione, M., & Gaglio, S. (2008). A cognitive architecture for robot self-consciousness. Artificial Intelligence in Medicine, 44, 147–154.CrossRefGoogle Scholar
  15. Clarke, E. (2005). Ways of listening. An ecological approach to the perception of musical meaning. Oxford: Oxford University Press.Google Scholar
  16. Desain, P., & Honing, H. (2003). The formation of rhythmic categories and metric priming. Perception, 32, 341–365.CrossRefGoogle Scholar
  17. Deutsch, D. (2013). Grouping mechanisms in music. In: D. Deutsch (Ed.), The psychology of music (3rd ed., chap. 6, pp. 183–248). Amsterdam: Academic.CrossRefGoogle Scholar
  18. Forth, J., Wiggins, G., & McLean, A. (2010). Unifying conceptual spaces: Concept formation in musical creative systems. Minds and Machines, 20, 503–532.CrossRefGoogle Scholar
  19. Gärdenfors, P. (1988). Semantics, conceptual spaces and the dimensions of music. In: V. Rantala, L. Rowell, & E. Tarasti (Eds.), Essays on the philosophy of music (pp. 9–27) Helsinki: Philosophical Society of Finland.Google Scholar
  20. Gärdenfors, P. (2000). Conceptual spaces. Bradford Books: MIT.Google Scholar
  21. Gärdenfors, P., & Williams M. A. (2001). Reasoning about categories in conceptual spaces. In Proceedings of the fourteenth international joint conference of artificial intelligence, Seattle (pp. 385–392).Google Scholar
  22. Gibson, J. (1979). The ecological approach to visual perception. Hillsdale: Lawwrence Erlbaum Associates.Google Scholar
  23. Helmholtz, H. (1954). On the sensations on tone as a physiological basis for the theory of music (Alexander J. Ellis, Trans.). New York: Dover Publications, Inc.Google Scholar
  24. Hutchinson, W., & Knopoff, L. (1978). The acoustic component of western consonance. Interface, 7(1), 1–29.CrossRefGoogle Scholar
  25. Kameoka, A., & Kuriyagawa, M. (1969a). Consonance theory, part I: Consonance of dyads. Journal of the Acoustical Society of America, 45(6), 1451–1459.CrossRefGoogle Scholar
  26. Kameoka, A., & Kuriyagawa, M. (1969b). Consonance theory, part II: Consonance of complex tones and its computation method. Journal of the Acoustical Society of America, 45(6), 1460–1469.CrossRefGoogle Scholar
  27. Krueger, J. (2009). Enacting musical experience. Journal of Consciousness Studies, 16, 98–123.Google Scholar
  28. Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge: MIT.Google Scholar
  29. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: MIT.Google Scholar
  30. Lesser, V., Nawab, H., & Klassner, F. (1995). IPUS: An architecture for the integrated processing and understanding of signals. Artificial Intelligence, 77, 129–171.CrossRefGoogle Scholar
  31. London, J. (2004). Hearing in time: Psychological aspects of musical meter. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Marr, D. (1982). Vision. New York: W.H. Freeman.Google Scholar
  33. Mashinter, K. (2006). Calculating sensory dissonance: Some discrepancies arising from the models of Kameoka & Kuriyagawa, and Hutchinson & Knopoff. Empirical Musicology Review, 1(2), 65–84.Google Scholar
  34. McAdams, S. (2013). Musical timbre perception. In D. Deutsch (Ed.), The psychology of music (3rd ed., chap. 2, pp. 35–67). Amsterdam: Academic.Google Scholar
  35. Oxenham, A. (2013). The perception of musical tones. In D. Deutsch (Ed.), The psychology of music (3rd ed., chap. 1, pp. 1–33). Amsterdam: Academic.Google Scholar
  36. Pearce, M., & Wiggins, G. (2004). Improved methods for statistical modelling of monophonic music. Journal of New Music Research, 33(4), 367–385.CrossRefGoogle Scholar
  37. Pearce, M., & Wiggins, G. (2006). Expectation in melody: The influence of context and learning. Music Perception: An Interdisciplinary Journal, 23(5), 377–406.CrossRefGoogle Scholar
  38. Plomp, R., & Levelt, W. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–560.CrossRefGoogle Scholar
  39. Roederer, J. (2008). The physics and psychophysics of music – An introduction (4th ed.). Berlin: Springer.Google Scholar
  40. Sethares, W. (1993). Local consonance and the relationship between timbre and scale. Journal of the Acoustical Society of America, 94(3), 1218–1228.CrossRefGoogle Scholar
  41. Sethares, W. (2005). Tuning, timbre, spectrum, scale (2nd ed.). London: Springer.Google Scholar
  42. Tanguiane, A. (1993). Artificial perception and music recognition (Lecture notes in artificial intelligence, Vol. 746). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  43. Temperley, D. (2001). The cognition of basic musical structures. Cambridge: MIT.Google Scholar
  44. Temperley, D. (2012). Computational models of music cognition. In D. Deutsch (Ed.), The psychology of music (3rd ed., chap. 8, pp. 327–368). Amsterdam: Academic.Google Scholar
  45. Terhardt, E. (1974). Pitch, consonance, and harmony. Journal of the Acoustical Society of America, 55(5), 1061–1069.CrossRefGoogle Scholar
  46. Terhardt, E. (1984). The concept of musical consonance: a link between music and psychoacoustics. Music Perception, 1(3), 276–295.CrossRefGoogle Scholar
  47. Thompson, W. (2013). Intervals and scales. In: D. Deutsch (Ed.), The psychology of music (3rd ed., chap. 4, pp. 107–140). Amsterdam: Academic.CrossRefGoogle Scholar
  48. Trehub, S. (2001). Musical predispositions in infancy. Annals of the New York Academy of Sciences, 930, 1–16.CrossRefGoogle Scholar
  49. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.CrossRefGoogle Scholar
  50. Wiggins, G. (2006). A preliminary framework for description, analysis and comparison of creative systems. Knowledge-Based Systems, 19, 449–458.CrossRefGoogle Scholar
  51. Wiggins, G., Pearce, M., & Müllensiefen, D. (2009). Computational modelling of music cognition and musical creativity. In R. Dean (Ed.), The oxford handbook of computer music (chap. 19, pp. 387–414). Oxford: Oxford University Press.Google Scholar
  52. Windsor, W., & de Bèzenac, C. (2012). Music and affordances. Musicae Scientiae, 16(1), 102–120.CrossRefGoogle Scholar
  53. Zwicker, E., Flottorp, G., & Stevens, S. (1957). Critical bandwidth in loudness summation. Journal of the Acoustical Society of America, 29, 548–557.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical, Management, Computer, Mechanical EngineeringUniversity of PalermoPalermoItaly

Personalised recommendations