Skip to main content

Quark-Flavour Physics

  • Chapter
  • First Online:
  • 1291 Accesses

Abstract

Precision measurements in the flavour system are a powerful tool for searches for new physics phenomena. Historically, bottom- and charm-flavour physics is performed in the clean environment of \(e^{+}e^{-}\) collider experiments. Exploiting the large \(b\bar{b}\) and \(c\bar{c}\) cross sections in \(pp\) collisions, the LHC experiments, however, impressively demonstrate their huge flavour-physics potential and have by now superseded most of the results of previous experiments. In this section we present some of the highlights of the flavour-physics programme of the LHC, give pedagogical introductions to the theoretical concepts, and interpret the experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The relation to the notation in (4.2.3)–(4.5) is as follows: \(Q_L=\varPsi _L\), \(q _{\tau j}^\prime =\psi _{q _{\tau , j}}\), \(q _{\tau j}=\hat{\psi }_{q _{\tau ,j}} \), \(Y^{q}=G_{q}\), and \(S_{\tau }^{q} = U^{{q}_\tau \dagger }\) for \(q =u,d \) and \(\tau =L,R\).

  2. 2.

    \(m(\varUpsilon (4S)) \approx 2 m(B)\).

  3. 3.

    This results in \({10}^{9}\) fully reconstructed events of the most abundant decay channel \(D^{0} \rightarrow K^{-} \pi ^+\).

  4. 4.

    All formulae presented for flavour-specific decays equally apply to the inclusive semileptonic decay or to exclusive decays like \(B^{0}_{q} \rightarrow D_{s}^{*-} \ell ^+ \nu _\ell \).

  5. 5.

    17 % of all \(B^{0}_{d}\) mesons and 50 % of all \(B^{0}_{s}\) mesons oscillate before they decay.

  6. 6.

    The definition of \(\mathcal {A}_{\text {phys}}(t)\) follows directly from 8.24 and 8.25.

  7. 7.

    Experimentally, muons are the lepton species most easily detected.

  8. 8.

    Due to the missing neutrino energy, the reconstruction of the \(B^{0}\) mass peak is not possible.

  9. 9.

    We explicitly ask the two kaons to come from an intermediate \(\phi \) resonance.

  10. 10.

    The tiny contribution of \(CP\) violation in the subsequent \(K_{S}\) decay is ignored.

  11. 11.

    \(S_{J/\psi \,K^{0}_{S} } \equiv A_{CP}^{\mathrm mix}\) and \(C_{J/\psi \,K^{0}_{S} } \equiv -A_{CP}^{\mathrm dir}\) in this notation. Additionally \(\sinh (\varDelta \varGamma _d t/2) = 0\) and \(\cosh (\varDelta \varGamma _d t/2) = 1\) due to \(\varDelta \varGamma _d = 0\).

  12. 12.

    The two vector mesons in the final state can have a relative angular momentum of \(L = 0,1,2\). This results in two transverse and one longitudinal polarisation states contributing to this decay.

  13. 13.

    The current contribution from flavour tagging to the systematic uncertainties on \(\phi _s\) is \(\sigma _{\phi _s}/\phi _s \approx 10\,\%\).

  14. 14.

    Note that in case of sizeable \(CP\) violation, the two decays lead to different numerical values for \(\phi _{s}\).

  15. 15.

    The updated result on \({3}\,{\mathrm{fb}^{-1}}\) [71] was not yet published at the time of writing of this volume.

  16. 16.

    MFV is a theoretical concept implying that all contributions from new physics to a flavour-violating amplitude are governed by the same CKM elements as the SM contribution [94, 95].

  17. 17.

    The product of two terms integrated over phase space is equal to zero.

  18. 18.

    For a complete list see [108] and references therein.

References

  1. A.J. Buras (1998), arXiv:hep-ph/9806471

  2. K. Anikeev et al. (2001), arXiv:hep-ph/0201071

  3. R. Fleischer (2004), arXiv:hep-ph/0405091

  4. Y. Nir (2005), arXiv:hep-ph/0510413

  5. G. Hiller, U. Uwer (2011) Quark flavour physics. in Physics at the Terascale, ed. by I. Brock, T. Schörner-Sadenius, Wiley-VCH, Weinheim, Germany, pp. 163–187.doi:10.1002/9783527634965.ch8

  6. U. Nierste (2009), arXiv:0904.1869

  7. G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (International Series of Monographs on Physics) (Oxford University Press, Oxford, 1999)

    Google Scholar 

  8. I.I. Bigi, A. Sanda, CP violation (Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology) (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  9. Luders, G. (1954) Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 1–17

    Google Scholar 

  10. W. Pauli, Exclusion principle, Lorentz group and reflection of space-time and charge, in Niels Bohr and the Development of Physics, ed. by W. Pauli, L. Rosenfeld, V. Weisskopf (MacGraw-Hill, New York, 1955), pp. 30–51

    Google Scholar 

  11. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  12. J. Christenson, J. Cronin, V. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)

    Article  ADS  Google Scholar 

  13. J. Christenson, J. Cronin, V. Fitch, R. Turlay, Phys. Rev. 140B, 74 (1965)

    Article  ADS  Google Scholar 

  14. O. Eberhardt et al., Phys. Rev. Lett. 109, 241802 (2012)

    Article  ADS  Google Scholar 

  15. Particle Data Group, Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  16. CKMfitter Group (2005) Eur. Phys. J. C 41, 1–131. Regular updates at http://ckmfitter.in2p3.fr. See also http://www.utfit.org

  17. BaBar Collaboration, Nucl. Instrum. Meth. A 729, 615–701 (2013)

    Google Scholar 

  18. Belle Collaboration, Nucl. Instrum. Meth. A 479, 117–232 (2002)

    Google Scholar 

  19. U. Nierste, J. Phys. Conf. Ser. 447, 012017 (2013)

    Article  ADS  Google Scholar 

  20. A.J. Buras, M. Jamin, P.H. Weisz, Nucl. Phys. B 347, 491–536 (1990)

    Article  ADS  Google Scholar 

  21. S. Aoki et al. (2013), arXiv:1310.8555

  22. M. Beneke et al., Phys. Lett. B 459, 631–640 (1999)

    Article  ADS  Google Scholar 

  23. M. Beneke, G. Buchalla, A. Lenz, U. Nierste, Phys. Lett. B 576, 173–183 (2003)

    Article  ADS  Google Scholar 

  24. M. Ciuchini et al., JHEP 08, 031 (2003)

    Article  ADS  Google Scholar 

  25. A. Lenz, U. Nierste, JHEP 06, 072 (2007)

    Article  ADS  Google Scholar 

  26. A. Lenz, U. Nierste (2011), arXiv:1102.4274

  27. S. Laplace, Z. Ligeti, Y. Nir, G. Perez, Phys. Rev. D 65, 094040 (2002)

    Article  ADS  Google Scholar 

  28. A. Lenz at al., Phys. Rev. D 83, 036004 (2011)

    Google Scholar 

  29. A. Lenz et al., Phys. Rev. D 86, 033008 (2012)

    Article  ADS  Google Scholar 

  30. LHCb Collaboration, New J. Phys. 15, 053021 (2013)

    Google Scholar 

  31. LHCb Collaboration, Phys. Lett. B 719, 215–318 (2013)

    Google Scholar 

  32. DØ Collaboration, Phys. Rev. D 89, 012002 (2014)

    Google Scholar 

  33. LHCb Collaboration (2014), Phys. Rev. Lett. 114, 041601 (2015)

    Google Scholar 

  34. LHCb Collaboration, Phys. Lett. B, 728, 607–615 (2014)

    Google Scholar 

  35. B.A.B.A.R. Collaboration, Phys. Rev. D 79, 072009 (2009)

    Article  Google Scholar 

  36. Belle Collaboration, Phys. Rev. Lett. 108, 171802 (2012)

    Article  Google Scholar 

  37. Heavy Flavour Averaging Group (2012), arXiv:1207.1158v2

  38. LHCb Collaboration, Phys. Lett. B, 721, 24–31 (2013)

    Google Scholar 

  39. LHCb Collaboration, Phys. Rev. D 87, 112010 (2013)

    Google Scholar 

  40. LHCb Collaboration, Phys. Rev. D 87, 052001 (2013)

    Google Scholar 

  41. LHCb Collaboration, Phys. Lett. B 736, 186 (2014)

    Google Scholar 

  42. LHCb Collaboration, Phys. Lett. B 713, 378–386 (2012)

    Google Scholar 

  43. LHCb Collaboration, Phys. Rev. Lett. 113, 211801 (2014)

    Google Scholar 

  44. ATLAS Collaboration, Phys. Rev. D 90, 052007 (2014)

    Google Scholar 

  45. LHCb Collaboration, Phys. Rev. D 90, 052011 (2014)

    Google Scholar 

  46. V.A. Khoze, M.A. Shifman, Sov. Phys. Usp. 26, 387 (1983)

    Article  ADS  Google Scholar 

  47. M.A. Shifman, M. Voloshin, Sov. J. Nucl. Phys. 41, 120 (1985)

    Google Scholar 

  48. M.A. Shifman, M. Voloshin, Sov. Phys. JETP 64, 698 (1986)

    Google Scholar 

  49. I.I. Bigi, N. Uraltsev, A. Vainshtein, Phys. Lett. B 293, 430–436 (1992)

    Article  ADS  Google Scholar 

  50. M. Beneke et al., Nucl. Phys. B 639, 389–407 (2002)

    Article  ADS  Google Scholar 

  51. LHCb Collaboration, JHEP 04, 114 (2014)

    Google Scholar 

  52. LHCb Collaboration, Phys. Lett. B 736, 446–454 (2014)

    Google Scholar 

  53. LHCb Collaboration, Phys. Rev. Lett. 112, 111802 (2014)

    Google Scholar 

  54. LHCb Collaboration, Phys. Rev. Lett. 108, 241801 (2012)

    Google Scholar 

  55. LHCb Collaboration, Nucl. Phys. B 873, 275–292 (2013)

    Google Scholar 

  56. LHCb Collaboration, Phys. Rev. Lett. 113, 172001 (2014)

    Google Scholar 

  57. M. Battaglia et al. (2003), arXiv:hep-ph/0304132

  58. LHCb Collaboration, Phys. Lett. B 734, 122 (2014)

    Google Scholar 

  59. LHCb Collaboration, Eur. Phys. J. C 74, 2839 (2014)

    Google Scholar 

  60. LHCb Collaboration, Phys. Rev. Lett. 113, 172001 (2014)

    Google Scholar 

  61. LHCb Collaboration, Phys. Rev. Lett. 110, 221601 (2013)

    Google Scholar 

  62. M. Gronau, D. Wyler, Phys. Lett. B 265, 172 (1991)

    Article  ADS  Google Scholar 

  63. M. Gronau, D. London, Phys. Lett. B 253, 483 (1991)

    Article  ADS  Google Scholar 

  64. D. Atwood, I. Dunietz, A. Soni, Phys. Rev. Lett. 78, 3257 (1997)

    Article  ADS  Google Scholar 

  65. A. Atwood, I. Dunietz, A. Soni, Phys. Rev. D 63, 036005 (2001)

    Article  ADS  Google Scholar 

  66. A. Giri, Y. Grossman, A. Soffer, J. Zupan, Phys. Rev. D 68, 054018 (2003)

    Article  ADS  Google Scholar 

  67. LHCb Collaboration, Phys. Rev. D 90, 112002 (2014)

    Google Scholar 

  68. LHCb Collaboration, Phys. Lett. B 712, 203 (2012)

    Google Scholar 

  69. LHCb Collaboration, Phys. Lett. B 723, (2013)

    Google Scholar 

  70. LHCb Collaboration, Phys. Lett. B 718, 43 (2012)

    Google Scholar 

  71. LHCb Collaboration, JHEP 10, 97 (2014)

    Google Scholar 

  72. LHCb Collaboration, Phys. Lett. B 726, 151–163 (2013)

    Google Scholar 

  73. LHCb Collaboration, Nucl. Phys. B 888, 169–193 (2014)

    Google Scholar 

  74. LHCb Collaboration, Phys. Lett. B 733, 36 (2014)

    Google Scholar 

  75. Babar Collaboration, Phys. Rev. D 87, 052015 (2013)

    Article  Google Scholar 

  76. Belle Collaboration (2013), arXiv:1301.2033

  77. R. Fleischer, Eur. Phys. J. C 52, 267–281 (2007)

    Article  ADS  Google Scholar 

  78. R. Fleischer, Phys. Lett. B 459, 306–320 (1999)

    Article  ADS  Google Scholar 

  79. R. Fleischer, R. Knegjens, Eur. Phys. J. C 71, 1532 (2011)

    ADS  Google Scholar 

  80. LHCb Collaboration, Phys. Lett. B 741, (2015)

    Google Scholar 

  81. LHCb Collaboration, JHEP 11, 060 (2014)

    Google Scholar 

  82. T. Feldmann, J. Matias, JHEP 01, 074 (2003)

    Article  ADS  Google Scholar 

  83. S. Jaeger, J. Martin Camalich, JHEP 05, 043 (2013)

    Google Scholar 

  84. S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, JHEP 1412, 125 (2014)

    Google Scholar 

  85. B. Grinstein, D. Pirjol, Phys. Rev. D 70, 114005 (2004)

    Article  ADS  Google Scholar 

  86. C. Bobeth, G. Hiller, D. van Dyk, JHEP 07, 098 (2010)

    Article  ADS  Google Scholar 

  87. M. Beylich, G. Buchalla, T. Feldmann, Eur. Phys. J. C 71, 1635 (2011)

    Article  ADS  Google Scholar 

  88. C. Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014)

    Article  ADS  Google Scholar 

  89. K. De Bruyn et al., Phys. Rev. Lett. 109(041), 801 (2012)

    Google Scholar 

  90. Heather E. Logan, Ulrich Nierste, Nucl. Phys. B 586, 39–55 (2000)

    Article  ADS  Google Scholar 

  91. A. Crivellin, A. Kokulu, C. Greub, Phys. Rev. D 87(9), 094031 (2013)

    Google Scholar 

  92. X.Q. Li, J. Lu, A. Pich, JHEP 06, 022 (2014)

    ADS  Google Scholar 

  93. W. Altmannshofer, D.M. Straub, JHEP 08, 121 (2012)

    Article  ADS  Google Scholar 

  94. R. Sekhar Chivukula, Howard Georgi, Phys. Lett. B 188, 99 (1987)

    Google Scholar 

  95. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155–187 (2002)

    Article  ADS  Google Scholar 

  96. K. Babu, C.F. Kolda, Phys. Rev. Lett. 84, 228–231 (2000)

    Article  ADS  Google Scholar 

  97. A. Dedes, H.K. Dreiner, U. Nierste, Phys. Rev. Lett. 87, 251804 (2001)

    Article  ADS  Google Scholar 

  98. A.J. Buras, P.H. Chankowski, J. Rosiek, L. Slawianowska, Phys. Lett. B 546, 96–107 (2002)

    Article  ADS  Google Scholar 

  99. W. Altmannshofer, M. Carena, N.R. Shah, F. Yu, JHEP 01, 160 (2013)

    Article  ADS  Google Scholar 

  100. W. Altmannshofer, PoS Beauty 2013, 024 (2013)

    Google Scholar 

  101. S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2, 1285–1292 (1970)

    Article  ADS  Google Scholar 

  102. G. Ecker, A. Pich, Nucl. Phys. B 366, 189–208 (1991)

    Article  ADS  Google Scholar 

  103. G. Isidori, R. Unterdorfer, JHEP 01, 009 (2004)

    Article  ADS  Google Scholar 

  104. LHCb Collaboration, JHEP 08, 131 (2013)

    Google Scholar 

  105. W. Altmannshofer et al., JHEP 01, 019 (2009)

    Article  ADS  Google Scholar 

  106. C. Bobeth, G. Hiller, G. Piranishvili, JHEP 07, 106 (2008)

    Article  ADS  Google Scholar 

  107. LHCb Collaboration, Phys. Rev. Lett. 108 (2012)

    Google Scholar 

  108. LHCb Collaboration, Phys. Rev. Lett. 111, 191801 (2013)

    Google Scholar 

  109. S. Descotes-Genon, T. Hurth, J. Mathias, J. Virto, JHEP 05, 137 (2013)

    Article  ADS  Google Scholar 

  110. S, Descotes-Genon, J. Matias, J. Virto, Phys. Rev. D D88(7), 074002 (2013)

    Google Scholar 

  111. LHCb Collaboration, JHEP 05, 082 (2014)

    Google Scholar 

  112. LHCb Collaboration, JHEP 05, 159 (2013)

    Google Scholar 

  113. LHCb Collaboration, JHEP 07, 084 (2013)

    Google Scholar 

  114. LHCb Collaboration, Phys. Rev. Lett. 111, 101805 (2013)

    Google Scholar 

  115. A.L. Read, J. Phys. G 28, 2693 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  116. Belle Collaboration, Phys. Lett. B 687, 139 (2010)

    Article  ADS  Google Scholar 

  117. LHCb Collaboration (2014), arXiv:1409.8548

  118. CDF Collaboration, Phys. Rev. Lett. 102, 201801 (2009)

    Google Scholar 

  119. LHCb Collaboration, Phys. Rev. Lett 111, 141801 (2013)

    Google Scholar 

  120. Belle Collaboration, Phys. Rev. D 81, 091102 (2010)

    Article  Google Scholar 

  121. LHCb Collaboration, Phys. Lett. B 725, 15–24 (2013)

    Google Scholar 

  122. G. Isidori, R. Unterdorfer, JHEP 01, 009 (2004)

    Article  ADS  Google Scholar 

  123. S. Gjesdal et al., Phys. Lett. B 44, 217 (1973)

    Article  ADS  Google Scholar 

  124. LHCb Collaboration, JHEP 01, 090 (2013)

    Google Scholar 

  125. LHCb Collaboration, Phys. Rev. Lett. 110, 021801 (2013)

    Google Scholar 

  126. CMS Collaboration, Phys. Rev. Lett 111, 101804 (2013)

    Google Scholar 

  127. M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, JHEP 03, 009 (2010)

    Article  ADS  Google Scholar 

  128. J. Brod, Y. Grossman, A.L. Kagan, J. Zupan, JHEP 10, 161 (2012)

    Google Scholar 

  129. LHCb Collaboration, Phys. Rev. Lett. 111, 251801 (2013)

    Google Scholar 

  130. LHCb Collaboration, Phys. Rev. Lett. 108, 111602 (2012)

    Google Scholar 

  131. LHCb Collaboration, JHEP 07, 041 (2014)

    Google Scholar 

  132. LHCb Collaboration, Phys. Rev. Lett. 112, 041801 (2014)

    Google Scholar 

  133. LHCb Collaboration, JHEP 04, 129 (2012)

    Google Scholar 

  134. LHCb Collaboration, Phys. Lett. B 728, 585–595 (2014)

    Google Scholar 

  135. LHCb Collaboration, Phys. Lett. B 726, 623–633 (2013)

    Google Scholar 

  136. LHCb Collaboration, JHEP 06, 112 (2013)

    Google Scholar 

  137. LHCb Collaboration, Phys. Rev. Lett. 112, 222002 (2014)

    Google Scholar 

  138. Belle Collaboration, Phys. Rev. Lett 100, 142001 (2008)

    Article  ADS  Google Scholar 

  139. S. Olsen (2014), arXiv:1403.1254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Hansmann-Menzemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansmann-Menzemer, S., Nierste, U. (2015). Quark-Flavour Physics. In: Schörner-Sadenius, T. (eds) The Large Hadron Collider. Springer, Cham. https://doi.org/10.1007/978-3-319-15001-7_8

Download citation

Publish with us

Policies and ethics