Skip to main content

Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers

Part of the Springer Series in Optical Sciences book series (SSOS,volume 194)

Abstract

The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.

Keywords

  • Photonic Crystal Fiber
  • Group Velocity Dispersion
  • Nonlinear Phase Shift
  • Ultrashort Optical Pulse
  • Pulse Evolution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14992-9_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14992-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9

References

  1. Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  2. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    CrossRef  ADS  Google Scholar 

  3. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2006)

    Google Scholar 

  4. M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000)

    CrossRef  ADS  Google Scholar 

  5. H. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    CrossRef  ADS  Google Scholar 

  6. L.F. Mollenauer, G.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press, San Diego, CA, 2006)

    Google Scholar 

  7. D. Grischowsky, A.C. Balant, Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–2 (1982)

    CrossRef  ADS  Google Scholar 

  8. W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave-breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459 (1985)

    CrossRef  ADS  Google Scholar 

  9. D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking in nonlinear optical fibers. J. Opt. Soc. Am. B 9, 1358–1361 (1992)

    CrossRef  ADS  Google Scholar 

  10. C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)

    CrossRef  ADS  Google Scholar 

  11. S. Boscolo, C. Finot, Nonlinear pulse shaping in fibres for pulse generation and optical processing. Int. J. Opt. 2012, 159057 (2012). doi:10.1155/2012/159057

  12. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking-free pulses in nonlinear optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993)

    CrossRef  ADS  Google Scholar 

  13. J.M. Dudley, C. Finot, D.J. Richardson, G. Millot, Self similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007)

    CrossRef  ADS  Google Scholar 

  14. S. Boscolo, S.K. Turitsyn, V.Y. Novokshenov, J.H.B. Nijhof, Self-similar parabolic optical solitary waves. Theor. Math. Phys. 133, 1647–1656 (2002)

    Google Scholar 

  15. V.I. Kruglov, J.D. Harvey, Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters. J. Opt. Soc. Am. B 23, 2541–2550 (2006)

    CrossRef  ADS  MathSciNet  Google Scholar 

  16. J.P. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10, 628–638 (2002)

    CrossRef  ADS  Google Scholar 

  17. C. Billet, J.M. Dudley, N. Joly, J.C. Knight, Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236–3241 (2005)

    CrossRef  ADS  Google Scholar 

  18. D.N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, P. Georges, Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. Opt. Lett. 32, 2520–2522 (2007)

    CrossRef  ADS  Google Scholar 

  19. C. Finot, G. Millot, S. Pitois, C. Billet, J.M. Dudley, Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers. IEEE J. Sel. Top. Quantum Electron. 10, 1211–1218 (2004)

    CrossRef  Google Scholar 

  20. K. Hammani, C. Finot, S. Pitois, J. Fatome, G. Millot, Real-time measurement of long parabolic optical similaritons. Electron. Lett. 44, 1239–1240 (2008)

    CrossRef  Google Scholar 

  21. F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902(4) (2004)

    Google Scholar 

  22. W.H. Renninger, A. Chong, F.W. Wise, Self-similar pulse evolution in an all-normal-dispersion laser. Phys. Rev. A 82, 021805(R) (2010)

    CrossRef  ADS  Google Scholar 

  23. B.G. Bale, S. Wabnitz, Strong spectral filtering for a mode-locked similariton fiber laser. Opt. Lett. 35, 2466–2468 (2010)

    CrossRef  ADS  Google Scholar 

  24. B. Oktem, C. Ülgüdür, F.O. Ilday, Soliton-similariton fibre laser. Nature Photon. 4, 307–311 (2010)

    CrossRef  Google Scholar 

  25. C. Aguergaray, D. Méchin, V.I. Kruglov, J.D. Harvey, Experimental realization of a mode-locked parabolic Raman fiber oscillator. Opt. Express 18, 8680–8687 (2010)

    CrossRef  Google Scholar 

  26. T. Hirooka, M. Nakazawa, Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group velocity dispersion. Opt. Lett. 29, 498–500 (2004)

    CrossRef  ADS  Google Scholar 

  27. A. Plocky, A.A. Sysoliatin, A.I. Latkin, V.F. Khopin, P. Harper, J. Harrison, S.K. Turitsyn, Experiments on the generation of parabolic pulses in waveguides with length varying normal chromatic dispersion. JETP Lett. 85, 319–322 (2007)

    CrossRef  ADS  Google Scholar 

  28. C. Finot, B. Barviau, G. Millot, A. Guryanov, A.A. Sysoliatin, S. Wabnitz, Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express 15, 15824–15835 (2007)

    CrossRef  ADS  Google Scholar 

  29. C. Finot, L. Provost, P. Petropoulos, D.J. Richardson, Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007)

    CrossRef  ADS  Google Scholar 

  30. S. Boscolo, A.I. Latkin, S.K. Turitsyn, Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quantum Electron. 44, 1196–1203 (2008)

    CrossRef  Google Scholar 

  31. G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996)

    CrossRef  MATH  Google Scholar 

  32. Y. Kodama, S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291–2293 (1995)

    CrossRef  ADS  Google Scholar 

  33. B.G. Bale, S. Boscolo, K. Hammani, C. Finot, Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime. J. Opt. Soc. Am. B 28, 2059–2065 (2011)

    CrossRef  ADS  Google Scholar 

  34. H. Wang, A.I. Latkin, S. Boscolo, P. Harper, S.K. Turitsyn, Generation of triangular-shaped optical pulses in normally dispersive fibre. J. Opt. (2010). doi:10.1088/2040-8978/12/3/035205

    Google Scholar 

  35. N. Verscheure, C. Finot, Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping. Electron. Lett. 47, 1194–1196 (2011)

    CrossRef  Google Scholar 

  36. S. Boscolo, S.K. Turitsyn, Intermediate asymptotics in nonlinear optical systems. Phys. Rev. A 85, 043811(5) (2012)

    Google Scholar 

  37. R.R. Alfano, The Supercontinuum Laser Source (Springer, New York, 2006)

    CrossRef  Google Scholar 

  38. J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, 2010)

    CrossRef  Google Scholar 

  39. M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida, Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol. 4, 215–223 (1998)

    CrossRef  ADS  Google Scholar 

  40. Y. Ozeki, Y. Takushima, K. Aiso, K. Taira, K. Kikuchi, Generation of 10 GHz similariton pulse trains from 1,2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources. Electron. Lett. 40, 1103–1104 (2004)

    CrossRef  Google Scholar 

  41. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M.A.F. Roelens, P. Petropoulos, D.J. Richardson, Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006)

    CrossRef  ADS  Google Scholar 

  42. A.M. Clarke, D.G. Williams, M.A.F. Roelens, B.J. Eggleton, Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor. J. Lightwave Technol. 28, 97–103 (2010)

    CrossRef  ADS  Google Scholar 

  43. Y. Xin, D.J. Richardson, P. Petropoulos, Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening. IEEE Photon. Technol. Lett. 25, 543–545 (2013)

    CrossRef  ADS  Google Scholar 

  44. L. Boivin, B.C. Collings, Spectrum slicing of coherent sources in optical communications. Opt. Fiber Technol. 7, 1–20 (2001)

    CrossRef  ADS  Google Scholar 

  45. Z. Yusoff, P. Petropoulos, K. Furusawa, T.M. Monro, D.J. Richardson, A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photon. Technol. Lett. 15, 1689–1691 (2003)

    CrossRef  ADS  Google Scholar 

  46. W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149 (1984)

    CrossRef  ADS  Google Scholar 

  47. S. Demmler, J. Rothhardt, A.M. Heidt, A. Hartung, E.G. Rohwer, H. Bartelt, J. Limpert, A. Tünnermann, Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19, 20151–20158 (2011)

    CrossRef  ADS  Google Scholar 

  48. L.I. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902–4907 (2011)

    CrossRef  ADS  Google Scholar 

  49. S.A. Planas, N.L. Pires Mansur, C.H. Brito Cruz, H.L. Fragnito, Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 18, 699–701 (1993)

    CrossRef  ADS  Google Scholar 

  50. E.R. Andresen, J. Thogersen, S.R. Keiding, Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett. 30, 2025–2027 (2005)

    CrossRef  ADS  Google Scholar 

  51. J.P. Limpert, T. Gabler, A. Liem, H. Zellmer, A. Tünnermann, SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier. Appl. Phys. B: Lasers Opt. 74, 191–195 (2002)

    CrossRef  ADS  Google Scholar 

  52. J.P. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, E. Mottay, High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30, 714–716 (2005)

    CrossRef  ADS  Google Scholar 

  53. B. Washburn, J. Buck, S. Ralph, Transform-limited spectral compression due to self-phase modulation in fibers. Opt. Lett. 25, 445–447 (2000)

    CrossRef  ADS  Google Scholar 

  54. C. Finot, A. Guenot, P. Dupriez, Spectral compression of optical parabolic similaritons. Ann. Phys. France 32, 71–74 (2007)

    CrossRef  Google Scholar 

  55. J. Fatome, B. Kibler, E.R. Andresen, H. Rigneault, C. Finot, All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. Appl. Opt. 51, 4547–4553 (2012)

    CrossRef  Google Scholar 

  56. E.R. Andresen, J.M. Dudley, C. Finot, D. Oron, H. Rigneault, Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp. Opt. Lett. 36, 707–709 (2011)

    CrossRef  ADS  Google Scholar 

  57. S. Boscolo, S.K. Turitsyn, C. Finot, Amplifier similariton fiber laser with nonlinear spectral compression. Opt. Lett. 37, 4531–4533 (2012)

    CrossRef  Google Scholar 

  58. S.V. Chernikov, P.V. Mamyshev, Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8, 1633–1641 (1991)

    CrossRef  ADS  Google Scholar 

  59. S.V. Chernikov, D.J. Richardson, E.M. Dianov, D.N. Payne, Picosecond soliton pulse compressor based on dispersion decreasing fibre. Electron. Lett. 28, 1842–1844 (1992)

    CrossRef  Google Scholar 

  60. M.L. Tse, P. Horak, J.H.V. Price, F. Poletti, F. He, D.J. Richardson, Pulse compression at 1.06 μm in dispersion-decreasing holey fibers. Opt. Lett. 31, 3504–3506 (2006)

    CrossRef  ADS  Google Scholar 

  61. V.A. Bogatyrev, M.M. Bubnov, E.M. Dianov, A.S. Kurkov, P.V. Mamyshev, A.M. Prokhorov, S.D. Rumyantsev, V.A. Semenov, S.L. Semenov, A.A. Sysoliatin, S.V. Chernikov, A.N. Guryanov, G.G. Devyatykh, S.I. Miroshnichenko, A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561–565 (1991)

    CrossRef  ADS  Google Scholar 

  62. S.V. Chernikov, J.R. Taylor, R. Kashyap, Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression. Electron. Lett. 30, 433–435 (1994)

    CrossRef  Google Scholar 

  63. S.V. Chernikov, J.R. Taylor, R. Kashyap, Comblike dispersion-profiled fiber for soliton pulse train generation. Opt. Lett. 19, 539–541 (1994)

    CrossRef  ADS  Google Scholar 

  64. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    CrossRef  ADS  Google Scholar 

  65. B. Kibler, R. Fischer, R.A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D.N. Neshev, J.M. Dudley, Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre. Electron. Lett. 43, 915–916 (2007)

    CrossRef  Google Scholar 

  66. A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, H.M. Crespo, Sub-two cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers. Opt. Lett. 34, 3851–3853 (2009)

    CrossRef  ADS  Google Scholar 

  67. A. Hasegawa, Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9, 288–290 (1984)

    CrossRef  ADS  Google Scholar 

  68. K. Tai, A. Hasegawa, A. Tomita, Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)

    CrossRef  ADS  Google Scholar 

  69. S. Pitois, J. Fatome, G. Millot, Generation of a 160 GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal. Opt. Lett. 27, 1729–1731 (2002)

    CrossRef  ADS  Google Scholar 

  70. J. Fatome, S. Pitois, G. Millot, 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers. IEEE J. Quantum Electron. 42, 1038–1046 (2006)

    CrossRef  ADS  Google Scholar 

  71. J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, E. Samain, Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source. Opt. Commun. 283, 2425–2429 (2010)

    CrossRef  ADS  Google Scholar 

  72. I. El Mansouri, J. Fatome, C. Finot, M. Lintz, S. Pitois, All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications. IEEE Photon. Technol. Lett. 23, 1487–1489 (2011)

    CrossRef  ADS  Google Scholar 

  73. C. Finot, J. Fatome, S. Pitois, G. Millot, All-fibered high-quality low duty-cycle 20-GHz and 40-GHz picosecond pulse sources. IEEE Photon. Technol. Lett. 19, 1711–1713 (2007)

    CrossRef  ADS  Google Scholar 

  74. F.M. Mitschke, L.F. Mollenauer, Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)

    CrossRef  ADS  Google Scholar 

  75. J.P. Gordon, Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)

    CrossRef  ADS  Google Scholar 

  76. E.R. Andresen, V. Birkedal, J. Thogersen, S.R. Keiding, Tunable light source for coherent anti-Stockes Raman scattering microspectroscopy based on the soliton self-frequency shift. Opt. Lett. 31, 1328–1330 (2006)

    CrossRef  ADS  Google Scholar 

  77. T. Johnson, S. Diddams, Mid-Infrared Upconversion Spectroscopy Based on a Yb: Fiber Femtosecond Laser. Appl. Phys. B 107, 31–39 (2012)

    CrossRef  ADS  Google Scholar 

  78. D.V. Skryabin, F. Luan, J.C. Knight, J.S. Russell, Soliton self-frequency shift cancellation in photonic crystal fibers. Science 201, 1705–1708 (2003)

    CrossRef  ADS  Google Scholar 

  79. P.V. Mamyshev, P.G.J. Wigley, J. Wilson, G.I. Stegeman, V.A. Semenov, E.M. Dianov, S.I. Miroshnichenko, Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. Phys. Rev. Lett. 71, 73–76 (1993)

    CrossRef  ADS  Google Scholar 

  80. R. Pant, A.C. Judge, E.C. Magi, B.T. Kuhlmey, M. de Sterke, B.J. Eggleton, Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. J. Opt. Soc. Am. B 27, 1894–1901 (2010)

    CrossRef  ADS  Google Scholar 

  81. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Modern Phys. 78, 1135–1184 (2006)

    CrossRef  ADS  Google Scholar 

  82. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fibers. Phys. Rev.Lett. 90, 113904(4) (2003)

    Google Scholar 

  83. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    CrossRef  ADS  Google Scholar 

  84. B. Kibler, K. Hammani, C. Michel, C. Finot, A. Picozzi, Rogue waves, rational solitons and wave turbulence theory. Phys. Lett. A 375, 3149–3155 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  85. J.M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, F. Dias, Extreme events in optics: challenges of the MANUREVA project. Eur. Phys. J. Special Topics 185, 125–133 (2010)

    CrossRef  ADS  Google Scholar 

  86. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)

    MATH  Google Scholar 

  87. M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M.I. Kolobov, M. Douay, Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374, 691–695 (2010)

    CrossRef  ADS  MATH  Google Scholar 

  88. G. Genty, C.M. de Sterke, O. Bang, F. Dias, N.N. Akhmediev, J.M. Dudley, Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 374, 989–996 (2010)

    CrossRef  ADS  MATH  Google Scholar 

  89. K. Hammani, B. Kibler, C. Finot, A. Picozzi, Emergence of rogue waves from optical turbulence. Phys. Lett. A 374, 3585–3589 (2010)

    CrossRef  ADS  MATH  Google Scholar 

  90. E.A. Kuznetsov, Solitons in a parametrically unstable plasma. Doklady Akamemii Nauk SSSR 22, 507–508 (1977)

    Google Scholar 

  91. N.N. Akhmediev, V.I. Korneev, Modulation instability and periodic-solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  92. J.M. Dudley, G. Genty, F. Dias, B. Kibler, N.N. Akhmediev, Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    CrossRef  ADS  Google Scholar 

  93. G. Genty, J.M. Dudley, Route to coherent supercontinuum generation in the long pulse regime. IEEE J. Quantum Electron. 45, 1331–1335 (2009)

    CrossRef  ADS  Google Scholar 

  94. D.R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902(4) (2008)

    Google Scholar 

  95. K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J.M. Dudley, G. Millot, Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011)

    CrossRef  ADS  Google Scholar 

  96. D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  97. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790–795 (2010)

    CrossRef  ADS  Google Scholar 

  98. M. Erkintalo, G. Genty, B. Wetzel, J.M. Dudley, Akhmediev breather evolution in optical fiber for realistic initial conditions. Phys. Lett. A 375, 2029–2034 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  99. M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley, G. Genty, Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901(4) (2011)

    Google Scholar 

  100. N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  101. A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015(6) (2012)

    Google Scholar 

  102. T. Kawata, H. Inoue, Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Japan 44, 1722–1729 (1978)

    CrossRef  ADS  MathSciNet  Google Scholar 

  103. Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    ADS  MathSciNet  Google Scholar 

  104. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J.M. Dudley, Observation of Kuznetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2, 463 (2012). doi:10.1038/srep00463

  105. B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 883 (2012). doi:10.1038/srep00882

  106. B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, G. Millot, Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator. Phys. Rev. A 89, 023821 (2014)

    CrossRef  ADS  Google Scholar 

  107. B. Frisquet, B. Kibler, G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032(9) (2013)

    Google Scholar 

  108. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T.F. Krauss, B.J. Eggleton, Observation of soliton compression in silicon photonic crystals. Nature Commun. 5, 3160 (2014). doi:10.1038/ncomms4160

Download references

Acknowledgments

We acknowledge important contributions of our colleagues into the original papers discussed in this chapter: K. Hammani, B. Kibler, C.H. Hage, H. Rigneault, E. Andresen, P. Harper, A.I. Latkin, B.G. Bale, F. Parmigiani, P. Petroupoulos, D.J. Richardson, J.M. Dudley, G. Genty and N.N. Akhmediev. We would also like to acknowledge the financial support of the Leverhulme Trust (grant RPG-278), the Conseil Regional de Bourgogne (PARI Photcom) and the Labex ACTION program (ANR-11-LABX-01-01). The experimental work has benefited from the PICASSO Platform of the University of Burgundy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Boscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boscolo, S., Fatome, J., Turitsyn, S.K., Millot, G., Finot, C. (2015). Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_4

Download citation