Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers

Part of the Springer Series in Optical Sciences book series (SSOS, volume 194)


The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.


Photonic Crystal Fiber Group Velocity Dispersion Nonlinear Phase Shift Ultrashort Optical Pulse Pulse Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge important contributions of our colleagues into the original papers discussed in this chapter: K. Hammani, B. Kibler, C.H. Hage, H. Rigneault, E. Andresen, P. Harper, A.I. Latkin, B.G. Bale, F. Parmigiani, P. Petroupoulos, D.J. Richardson, J.M. Dudley, G. Genty and N.N. Akhmediev. We would also like to acknowledge the financial support of the Leverhulme Trust (grant RPG-278), the Conseil Regional de Bourgogne (PARI Photcom) and the Labex ACTION program (ANR-11-LABX-01-01). The experimental work has benefited from the PICASSO Platform of the University of Burgundy.


  1. 1.
    Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  2. 2.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)CrossRefADSGoogle Scholar
  3. 3.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2006)Google Scholar
  4. 4.
    M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000)CrossRefADSGoogle Scholar
  5. 5.
    H. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)CrossRefADSGoogle Scholar
  6. 6.
    L.F. Mollenauer, G.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press, San Diego, CA, 2006)Google Scholar
  7. 7.
    D. Grischowsky, A.C. Balant, Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–2 (1982)CrossRefADSGoogle Scholar
  8. 8.
    W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave-breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459 (1985)CrossRefADSGoogle Scholar
  9. 9.
    D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking in nonlinear optical fibers. J. Opt. Soc. Am. B 9, 1358–1361 (1992)CrossRefADSGoogle Scholar
  10. 10.
    C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)CrossRefADSGoogle Scholar
  11. 11.
    S. Boscolo, C. Finot, Nonlinear pulse shaping in fibres for pulse generation and optical processing. Int. J. Opt. 2012, 159057 (2012). doi: 10.1155/2012/159057
  12. 12.
    D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking-free pulses in nonlinear optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993)CrossRefADSGoogle Scholar
  13. 13.
    J.M. Dudley, C. Finot, D.J. Richardson, G. Millot, Self similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007)CrossRefADSGoogle Scholar
  14. 14.
    S. Boscolo, S.K. Turitsyn, V.Y. Novokshenov, J.H.B. Nijhof, Self-similar parabolic optical solitary waves. Theor. Math. Phys. 133, 1647–1656 (2002)Google Scholar
  15. 15.
    V.I. Kruglov, J.D. Harvey, Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters. J. Opt. Soc. Am. B 23, 2541–2550 (2006)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    J.P. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10, 628–638 (2002)CrossRefADSGoogle Scholar
  17. 17.
    C. Billet, J.M. Dudley, N. Joly, J.C. Knight, Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236–3241 (2005)CrossRefADSGoogle Scholar
  18. 18.
    D.N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, P. Georges, Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. Opt. Lett. 32, 2520–2522 (2007)CrossRefADSGoogle Scholar
  19. 19.
    C. Finot, G. Millot, S. Pitois, C. Billet, J.M. Dudley, Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers. IEEE J. Sel. Top. Quantum Electron. 10, 1211–1218 (2004)CrossRefGoogle Scholar
  20. 20.
    K. Hammani, C. Finot, S. Pitois, J. Fatome, G. Millot, Real-time measurement of long parabolic optical similaritons. Electron. Lett. 44, 1239–1240 (2008)CrossRefGoogle Scholar
  21. 21.
    F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902(4) (2004)Google Scholar
  22. 22.
    W.H. Renninger, A. Chong, F.W. Wise, Self-similar pulse evolution in an all-normal-dispersion laser. Phys. Rev. A 82, 021805(R) (2010)CrossRefADSGoogle Scholar
  23. 23.
    B.G. Bale, S. Wabnitz, Strong spectral filtering for a mode-locked similariton fiber laser. Opt. Lett. 35, 2466–2468 (2010)CrossRefADSGoogle Scholar
  24. 24.
    B. Oktem, C. Ülgüdür, F.O. Ilday, Soliton-similariton fibre laser. Nature Photon. 4, 307–311 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Aguergaray, D. Méchin, V.I. Kruglov, J.D. Harvey, Experimental realization of a mode-locked parabolic Raman fiber oscillator. Opt. Express 18, 8680–8687 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Hirooka, M. Nakazawa, Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group velocity dispersion. Opt. Lett. 29, 498–500 (2004)CrossRefADSGoogle Scholar
  27. 27.
    A. Plocky, A.A. Sysoliatin, A.I. Latkin, V.F. Khopin, P. Harper, J. Harrison, S.K. Turitsyn, Experiments on the generation of parabolic pulses in waveguides with length varying normal chromatic dispersion. JETP Lett. 85, 319–322 (2007)CrossRefADSGoogle Scholar
  28. 28.
    C. Finot, B. Barviau, G. Millot, A. Guryanov, A.A. Sysoliatin, S. Wabnitz, Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express 15, 15824–15835 (2007)CrossRefADSGoogle Scholar
  29. 29.
    C. Finot, L. Provost, P. Petropoulos, D.J. Richardson, Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007)CrossRefADSGoogle Scholar
  30. 30.
    S. Boscolo, A.I. Latkin, S.K. Turitsyn, Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quantum Electron. 44, 1196–1203 (2008)CrossRefGoogle Scholar
  31. 31.
    G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996)CrossRefzbMATHGoogle Scholar
  32. 32.
    Y. Kodama, S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291–2293 (1995)CrossRefADSGoogle Scholar
  33. 33.
    B.G. Bale, S. Boscolo, K. Hammani, C. Finot, Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime. J. Opt. Soc. Am. B 28, 2059–2065 (2011)CrossRefADSGoogle Scholar
  34. 34.
    H. Wang, A.I. Latkin, S. Boscolo, P. Harper, S.K. Turitsyn, Generation of triangular-shaped optical pulses in normally dispersive fibre. J. Opt. (2010). doi: 10.1088/2040-8978/12/3/035205 Google Scholar
  35. 35.
    N. Verscheure, C. Finot, Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping. Electron. Lett. 47, 1194–1196 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Boscolo, S.K. Turitsyn, Intermediate asymptotics in nonlinear optical systems. Phys. Rev. A 85, 043811(5) (2012)Google Scholar
  37. 37.
    R.R. Alfano, The Supercontinuum Laser Source (Springer, New York, 2006)CrossRefGoogle Scholar
  38. 38.
    J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, 2010)CrossRefGoogle Scholar
  39. 39.
    M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida, Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol. 4, 215–223 (1998)CrossRefADSGoogle Scholar
  40. 40.
    Y. Ozeki, Y. Takushima, K. Aiso, K. Taira, K. Kikuchi, Generation of 10 GHz similariton pulse trains from 1,2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources. Electron. Lett. 40, 1103–1104 (2004)CrossRefGoogle Scholar
  41. 41.
    F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M.A.F. Roelens, P. Petropoulos, D.J. Richardson, Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006)CrossRefADSGoogle Scholar
  42. 42.
    A.M. Clarke, D.G. Williams, M.A.F. Roelens, B.J. Eggleton, Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor. J. Lightwave Technol. 28, 97–103 (2010)CrossRefADSGoogle Scholar
  43. 43.
    Y. Xin, D.J. Richardson, P. Petropoulos, Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening. IEEE Photon. Technol. Lett. 25, 543–545 (2013)CrossRefADSGoogle Scholar
  44. 44.
    L. Boivin, B.C. Collings, Spectrum slicing of coherent sources in optical communications. Opt. Fiber Technol. 7, 1–20 (2001)CrossRefADSGoogle Scholar
  45. 45.
    Z. Yusoff, P. Petropoulos, K. Furusawa, T.M. Monro, D.J. Richardson, A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photon. Technol. Lett. 15, 1689–1691 (2003)CrossRefADSGoogle Scholar
  46. 46.
    W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149 (1984)CrossRefADSGoogle Scholar
  47. 47.
    S. Demmler, J. Rothhardt, A.M. Heidt, A. Hartung, E.G. Rohwer, H. Bartelt, J. Limpert, A. Tünnermann, Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19, 20151–20158 (2011)CrossRefADSGoogle Scholar
  48. 48.
    L.I. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902–4907 (2011)CrossRefADSGoogle Scholar
  49. 49.
    S.A. Planas, N.L. Pires Mansur, C.H. Brito Cruz, H.L. Fragnito, Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 18, 699–701 (1993)CrossRefADSGoogle Scholar
  50. 50.
    E.R. Andresen, J. Thogersen, S.R. Keiding, Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett. 30, 2025–2027 (2005)CrossRefADSGoogle Scholar
  51. 51.
    J.P. Limpert, T. Gabler, A. Liem, H. Zellmer, A. Tünnermann, SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier. Appl. Phys. B: Lasers Opt. 74, 191–195 (2002)CrossRefADSGoogle Scholar
  52. 52.
    J.P. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, E. Mottay, High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30, 714–716 (2005)CrossRefADSGoogle Scholar
  53. 53.
    B. Washburn, J. Buck, S. Ralph, Transform-limited spectral compression due to self-phase modulation in fibers. Opt. Lett. 25, 445–447 (2000)CrossRefADSGoogle Scholar
  54. 54.
    C. Finot, A. Guenot, P. Dupriez, Spectral compression of optical parabolic similaritons. Ann. Phys. France 32, 71–74 (2007)CrossRefGoogle Scholar
  55. 55.
    J. Fatome, B. Kibler, E.R. Andresen, H. Rigneault, C. Finot, All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. Appl. Opt. 51, 4547–4553 (2012)CrossRefGoogle Scholar
  56. 56.
    E.R. Andresen, J.M. Dudley, C. Finot, D. Oron, H. Rigneault, Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp. Opt. Lett. 36, 707–709 (2011)CrossRefADSGoogle Scholar
  57. 57.
    S. Boscolo, S.K. Turitsyn, C. Finot, Amplifier similariton fiber laser with nonlinear spectral compression. Opt. Lett. 37, 4531–4533 (2012)CrossRefGoogle Scholar
  58. 58.
    S.V. Chernikov, P.V. Mamyshev, Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8, 1633–1641 (1991)CrossRefADSGoogle Scholar
  59. 59.
    S.V. Chernikov, D.J. Richardson, E.M. Dianov, D.N. Payne, Picosecond soliton pulse compressor based on dispersion decreasing fibre. Electron. Lett. 28, 1842–1844 (1992)CrossRefGoogle Scholar
  60. 60.
    M.L. Tse, P. Horak, J.H.V. Price, F. Poletti, F. He, D.J. Richardson, Pulse compression at 1.06 μm in dispersion-decreasing holey fibers. Opt. Lett. 31, 3504–3506 (2006)CrossRefADSGoogle Scholar
  61. 61.
    V.A. Bogatyrev, M.M. Bubnov, E.M. Dianov, A.S. Kurkov, P.V. Mamyshev, A.M. Prokhorov, S.D. Rumyantsev, V.A. Semenov, S.L. Semenov, A.A. Sysoliatin, S.V. Chernikov, A.N. Guryanov, G.G. Devyatykh, S.I. Miroshnichenko, A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561–565 (1991)CrossRefADSGoogle Scholar
  62. 62.
    S.V. Chernikov, J.R. Taylor, R. Kashyap, Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression. Electron. Lett. 30, 433–435 (1994)CrossRefGoogle Scholar
  63. 63.
    S.V. Chernikov, J.R. Taylor, R. Kashyap, Comblike dispersion-profiled fiber for soliton pulse train generation. Opt. Lett. 19, 539–541 (1994)CrossRefADSGoogle Scholar
  64. 64.
    L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)CrossRefADSGoogle Scholar
  65. 65.
    B. Kibler, R. Fischer, R.A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D.N. Neshev, J.M. Dudley, Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre. Electron. Lett. 43, 915–916 (2007)CrossRefGoogle Scholar
  66. 66.
    A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, H.M. Crespo, Sub-two cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers. Opt. Lett. 34, 3851–3853 (2009)CrossRefADSGoogle Scholar
  67. 67.
    A. Hasegawa, Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9, 288–290 (1984)CrossRefADSGoogle Scholar
  68. 68.
    K. Tai, A. Hasegawa, A. Tomita, Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)CrossRefADSGoogle Scholar
  69. 69.
    S. Pitois, J. Fatome, G. Millot, Generation of a 160 GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal. Opt. Lett. 27, 1729–1731 (2002)CrossRefADSGoogle Scholar
  70. 70.
    J. Fatome, S. Pitois, G. Millot, 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers. IEEE J. Quantum Electron. 42, 1038–1046 (2006)CrossRefADSGoogle Scholar
  71. 71.
    J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, E. Samain, Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source. Opt. Commun. 283, 2425–2429 (2010)CrossRefADSGoogle Scholar
  72. 72.
    I. El Mansouri, J. Fatome, C. Finot, M. Lintz, S. Pitois, All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications. IEEE Photon. Technol. Lett. 23, 1487–1489 (2011)CrossRefADSGoogle Scholar
  73. 73.
    C. Finot, J. Fatome, S. Pitois, G. Millot, All-fibered high-quality low duty-cycle 20-GHz and 40-GHz picosecond pulse sources. IEEE Photon. Technol. Lett. 19, 1711–1713 (2007)CrossRefADSGoogle Scholar
  74. 74.
    F.M. Mitschke, L.F. Mollenauer, Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRefADSGoogle Scholar
  75. 75.
    J.P. Gordon, Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)CrossRefADSGoogle Scholar
  76. 76.
    E.R. Andresen, V. Birkedal, J. Thogersen, S.R. Keiding, Tunable light source for coherent anti-Stockes Raman scattering microspectroscopy based on the soliton self-frequency shift. Opt. Lett. 31, 1328–1330 (2006)CrossRefADSGoogle Scholar
  77. 77.
    T. Johnson, S. Diddams, Mid-Infrared Upconversion Spectroscopy Based on a Yb: Fiber Femtosecond Laser. Appl. Phys. B 107, 31–39 (2012)CrossRefADSGoogle Scholar
  78. 78.
    D.V. Skryabin, F. Luan, J.C. Knight, J.S. Russell, Soliton self-frequency shift cancellation in photonic crystal fibers. Science 201, 1705–1708 (2003)CrossRefADSGoogle Scholar
  79. 79.
    P.V. Mamyshev, P.G.J. Wigley, J. Wilson, G.I. Stegeman, V.A. Semenov, E.M. Dianov, S.I. Miroshnichenko, Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. Phys. Rev. Lett. 71, 73–76 (1993)CrossRefADSGoogle Scholar
  80. 80.
    R. Pant, A.C. Judge, E.C. Magi, B.T. Kuhlmey, M. de Sterke, B.J. Eggleton, Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. J. Opt. Soc. Am. B 27, 1894–1901 (2010)CrossRefADSGoogle Scholar
  81. 81.
    J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Modern Phys. 78, 1135–1184 (2006)CrossRefADSGoogle Scholar
  82. 82.
    K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fibers. Phys. Rev.Lett. 90, 113904(4) (2003)Google Scholar
  83. 83.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)CrossRefADSGoogle Scholar
  84. 84.
    B. Kibler, K. Hammani, C. Michel, C. Finot, A. Picozzi, Rogue waves, rational solitons and wave turbulence theory. Phys. Lett. A 375, 3149–3155 (2011)CrossRefADSzbMATHGoogle Scholar
  85. 85.
    J.M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, F. Dias, Extreme events in optics: challenges of the MANUREVA project. Eur. Phys. J. Special Topics 185, 125–133 (2010)CrossRefADSGoogle Scholar
  86. 86.
    C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)zbMATHGoogle Scholar
  87. 87.
    M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M.I. Kolobov, M. Douay, Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374, 691–695 (2010)CrossRefADSzbMATHGoogle Scholar
  88. 88.
    G. Genty, C.M. de Sterke, O. Bang, F. Dias, N.N. Akhmediev, J.M. Dudley, Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 374, 989–996 (2010)CrossRefADSzbMATHGoogle Scholar
  89. 89.
    K. Hammani, B. Kibler, C. Finot, A. Picozzi, Emergence of rogue waves from optical turbulence. Phys. Lett. A 374, 3585–3589 (2010)CrossRefADSzbMATHGoogle Scholar
  90. 90.
    E.A. Kuznetsov, Solitons in a parametrically unstable plasma. Doklady Akamemii Nauk SSSR 22, 507–508 (1977)Google Scholar
  91. 91.
    N.N. Akhmediev, V.I. Korneev, Modulation instability and periodic-solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  92. 92.
    J.M. Dudley, G. Genty, F. Dias, B. Kibler, N.N. Akhmediev, Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)CrossRefADSGoogle Scholar
  93. 93.
    G. Genty, J.M. Dudley, Route to coherent supercontinuum generation in the long pulse regime. IEEE J. Quantum Electron. 45, 1331–1335 (2009)CrossRefADSGoogle Scholar
  94. 94.
    D.R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902(4) (2008)Google Scholar
  95. 95.
    K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J.M. Dudley, G. Millot, Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011)CrossRefADSGoogle Scholar
  96. 96.
    D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  97. 97.
    B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790–795 (2010)CrossRefADSGoogle Scholar
  98. 98.
    M. Erkintalo, G. Genty, B. Wetzel, J.M. Dudley, Akhmediev breather evolution in optical fiber for realistic initial conditions. Phys. Lett. A 375, 2029–2034 (2011)CrossRefADSzbMATHGoogle Scholar
  99. 99.
    M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley, G. Genty, Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901(4) (2011)Google Scholar
  100. 100.
    N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
  101. 101.
    A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015(6) (2012)Google Scholar
  102. 102.
    T. Kawata, H. Inoue, Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Japan 44, 1722–1729 (1978)CrossRefADSMathSciNetGoogle Scholar
  103. 103.
    Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)ADSMathSciNetGoogle Scholar
  104. 104.
    B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J.M. Dudley, Observation of Kuznetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2, 463 (2012). doi: 10.1038/srep00463
  105. 105.
    B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 883 (2012). doi: 10.1038/srep00882
  106. 106.
    B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, G. Millot, Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator. Phys. Rev. A 89, 023821 (2014)CrossRefADSGoogle Scholar
  107. 107.
    B. Frisquet, B. Kibler, G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032(9) (2013)Google Scholar
  108. 108.
    A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T.F. Krauss, B.J. Eggleton, Observation of soliton compression in silicon photonic crystals. Nature Commun. 5, 3160 (2014). doi: 10.1038/ncomms4160

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Aston Institute of Photonic Technologies, School of Engineering and Applied ScienceAston UniversityBirminghamUK
  2. 2.Laboratoire Interdisciplinaire CARNOT de BourgogneUMR 6303 CNRS-Université de BourgogneDijonFrance

Personalised recommendations