All-Optical Signal Processing pp 105-128 | Cite as
Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers
- 1 Citations
- 2.3k Downloads
Abstract
The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.
Keywords
Photonic Crystal Fiber Group Velocity Dispersion Nonlinear Phase Shift Ultrashort Optical Pulse Pulse EvolutionNotes
Acknowledgments
We acknowledge important contributions of our colleagues into the original papers discussed in this chapter: K. Hammani, B. Kibler, C.H. Hage, H. Rigneault, E. Andresen, P. Harper, A.I. Latkin, B.G. Bale, F. Parmigiani, P. Petroupoulos, D.J. Richardson, J.M. Dudley, G. Genty and N.N. Akhmediev. We would also like to acknowledge the financial support of the Leverhulme Trust (grant RPG-278), the Conseil Regional de Bourgogne (PARI Photcom) and the Labex ACTION program (ANR-11-LABX-01-01). The experimental work has benefited from the PICASSO Platform of the University of Burgundy.
References
- 1.Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
- 2.A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)CrossRefADSGoogle Scholar
- 3.G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2006)Google Scholar
- 4.M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000)CrossRefADSGoogle Scholar
- 5.H. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)CrossRefADSGoogle Scholar
- 6.L.F. Mollenauer, G.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press, San Diego, CA, 2006)Google Scholar
- 7.D. Grischowsky, A.C. Balant, Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–2 (1982)CrossRefADSGoogle Scholar
- 8.W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave-breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459 (1985)CrossRefADSGoogle Scholar
- 9.D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking in nonlinear optical fibers. J. Opt. Soc. Am. B 9, 1358–1361 (1992)CrossRefADSGoogle Scholar
- 10.C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)CrossRefADSGoogle Scholar
- 11.S. Boscolo, C. Finot, Nonlinear pulse shaping in fibres for pulse generation and optical processing. Int. J. Opt. 2012, 159057 (2012). doi: 10.1155/2012/159057
- 12.D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M.L. Quiroga-Teixeiro, Wave-breaking-free pulses in nonlinear optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993)CrossRefADSGoogle Scholar
- 13.J.M. Dudley, C. Finot, D.J. Richardson, G. Millot, Self similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007)CrossRefADSGoogle Scholar
- 14.S. Boscolo, S.K. Turitsyn, V.Y. Novokshenov, J.H.B. Nijhof, Self-similar parabolic optical solitary waves. Theor. Math. Phys. 133, 1647–1656 (2002)Google Scholar
- 15.V.I. Kruglov, J.D. Harvey, Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters. J. Opt. Soc. Am. B 23, 2541–2550 (2006)CrossRefADSMathSciNetGoogle Scholar
- 16.J.P. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10, 628–638 (2002)CrossRefADSGoogle Scholar
- 17.C. Billet, J.M. Dudley, N. Joly, J.C. Knight, Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236–3241 (2005)CrossRefADSGoogle Scholar
- 18.D.N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, P. Georges, Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. Opt. Lett. 32, 2520–2522 (2007)CrossRefADSGoogle Scholar
- 19.C. Finot, G. Millot, S. Pitois, C. Billet, J.M. Dudley, Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers. IEEE J. Sel. Top. Quantum Electron. 10, 1211–1218 (2004)CrossRefGoogle Scholar
- 20.K. Hammani, C. Finot, S. Pitois, J. Fatome, G. Millot, Real-time measurement of long parabolic optical similaritons. Electron. Lett. 44, 1239–1240 (2008)CrossRefGoogle Scholar
- 21.F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902(4) (2004)Google Scholar
- 22.W.H. Renninger, A. Chong, F.W. Wise, Self-similar pulse evolution in an all-normal-dispersion laser. Phys. Rev. A 82, 021805(R) (2010)CrossRefADSGoogle Scholar
- 23.B.G. Bale, S. Wabnitz, Strong spectral filtering for a mode-locked similariton fiber laser. Opt. Lett. 35, 2466–2468 (2010)CrossRefADSGoogle Scholar
- 24.B. Oktem, C. Ülgüdür, F.O. Ilday, Soliton-similariton fibre laser. Nature Photon. 4, 307–311 (2010)CrossRefGoogle Scholar
- 25.C. Aguergaray, D. Méchin, V.I. Kruglov, J.D. Harvey, Experimental realization of a mode-locked parabolic Raman fiber oscillator. Opt. Express 18, 8680–8687 (2010)CrossRefGoogle Scholar
- 26.T. Hirooka, M. Nakazawa, Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group velocity dispersion. Opt. Lett. 29, 498–500 (2004)CrossRefADSGoogle Scholar
- 27.A. Plocky, A.A. Sysoliatin, A.I. Latkin, V.F. Khopin, P. Harper, J. Harrison, S.K. Turitsyn, Experiments on the generation of parabolic pulses in waveguides with length varying normal chromatic dispersion. JETP Lett. 85, 319–322 (2007)CrossRefADSGoogle Scholar
- 28.C. Finot, B. Barviau, G. Millot, A. Guryanov, A.A. Sysoliatin, S. Wabnitz, Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express 15, 15824–15835 (2007)CrossRefADSGoogle Scholar
- 29.C. Finot, L. Provost, P. Petropoulos, D.J. Richardson, Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007)CrossRefADSGoogle Scholar
- 30.S. Boscolo, A.I. Latkin, S.K. Turitsyn, Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quantum Electron. 44, 1196–1203 (2008)CrossRefGoogle Scholar
- 31.G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996)CrossRefzbMATHGoogle Scholar
- 32.Y. Kodama, S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291–2293 (1995)CrossRefADSGoogle Scholar
- 33.B.G. Bale, S. Boscolo, K. Hammani, C. Finot, Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime. J. Opt. Soc. Am. B 28, 2059–2065 (2011)CrossRefADSGoogle Scholar
- 34.H. Wang, A.I. Latkin, S. Boscolo, P. Harper, S.K. Turitsyn, Generation of triangular-shaped optical pulses in normally dispersive fibre. J. Opt. (2010). doi: 10.1088/2040-8978/12/3/035205 Google Scholar
- 35.N. Verscheure, C. Finot, Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping. Electron. Lett. 47, 1194–1196 (2011)CrossRefGoogle Scholar
- 36.S. Boscolo, S.K. Turitsyn, Intermediate asymptotics in nonlinear optical systems. Phys. Rev. A 85, 043811(5) (2012)Google Scholar
- 37.R.R. Alfano, The Supercontinuum Laser Source (Springer, New York, 2006)CrossRefGoogle Scholar
- 38.J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, 2010)CrossRefGoogle Scholar
- 39.M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida, Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol. 4, 215–223 (1998)CrossRefADSGoogle Scholar
- 40.Y. Ozeki, Y. Takushima, K. Aiso, K. Taira, K. Kikuchi, Generation of 10 GHz similariton pulse trains from 1,2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources. Electron. Lett. 40, 1103–1104 (2004)CrossRefGoogle Scholar
- 41.F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M.A.F. Roelens, P. Petropoulos, D.J. Richardson, Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006)CrossRefADSGoogle Scholar
- 42.A.M. Clarke, D.G. Williams, M.A.F. Roelens, B.J. Eggleton, Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor. J. Lightwave Technol. 28, 97–103 (2010)CrossRefADSGoogle Scholar
- 43.Y. Xin, D.J. Richardson, P. Petropoulos, Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening. IEEE Photon. Technol. Lett. 25, 543–545 (2013)CrossRefADSGoogle Scholar
- 44.L. Boivin, B.C. Collings, Spectrum slicing of coherent sources in optical communications. Opt. Fiber Technol. 7, 1–20 (2001)CrossRefADSGoogle Scholar
- 45.Z. Yusoff, P. Petropoulos, K. Furusawa, T.M. Monro, D.J. Richardson, A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photon. Technol. Lett. 15, 1689–1691 (2003)CrossRefADSGoogle Scholar
- 46.W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149 (1984)CrossRefADSGoogle Scholar
- 47.S. Demmler, J. Rothhardt, A.M. Heidt, A. Hartung, E.G. Rohwer, H. Bartelt, J. Limpert, A. Tünnermann, Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19, 20151–20158 (2011)CrossRefADSGoogle Scholar
- 48.L.I. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902–4907 (2011)CrossRefADSGoogle Scholar
- 49.S.A. Planas, N.L. Pires Mansur, C.H. Brito Cruz, H.L. Fragnito, Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 18, 699–701 (1993)CrossRefADSGoogle Scholar
- 50.E.R. Andresen, J. Thogersen, S.R. Keiding, Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett. 30, 2025–2027 (2005)CrossRefADSGoogle Scholar
- 51.J.P. Limpert, T. Gabler, A. Liem, H. Zellmer, A. Tünnermann, SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier. Appl. Phys. B: Lasers Opt. 74, 191–195 (2002)CrossRefADSGoogle Scholar
- 52.J.P. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, E. Mottay, High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30, 714–716 (2005)CrossRefADSGoogle Scholar
- 53.B. Washburn, J. Buck, S. Ralph, Transform-limited spectral compression due to self-phase modulation in fibers. Opt. Lett. 25, 445–447 (2000)CrossRefADSGoogle Scholar
- 54.C. Finot, A. Guenot, P. Dupriez, Spectral compression of optical parabolic similaritons. Ann. Phys. France 32, 71–74 (2007)CrossRefGoogle Scholar
- 55.J. Fatome, B. Kibler, E.R. Andresen, H. Rigneault, C. Finot, All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. Appl. Opt. 51, 4547–4553 (2012)CrossRefGoogle Scholar
- 56.E.R. Andresen, J.M. Dudley, C. Finot, D. Oron, H. Rigneault, Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp. Opt. Lett. 36, 707–709 (2011)CrossRefADSGoogle Scholar
- 57.S. Boscolo, S.K. Turitsyn, C. Finot, Amplifier similariton fiber laser with nonlinear spectral compression. Opt. Lett. 37, 4531–4533 (2012)CrossRefGoogle Scholar
- 58.S.V. Chernikov, P.V. Mamyshev, Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8, 1633–1641 (1991)CrossRefADSGoogle Scholar
- 59.S.V. Chernikov, D.J. Richardson, E.M. Dianov, D.N. Payne, Picosecond soliton pulse compressor based on dispersion decreasing fibre. Electron. Lett. 28, 1842–1844 (1992)CrossRefGoogle Scholar
- 60.M.L. Tse, P. Horak, J.H.V. Price, F. Poletti, F. He, D.J. Richardson, Pulse compression at 1.06 μm in dispersion-decreasing holey fibers. Opt. Lett. 31, 3504–3506 (2006)CrossRefADSGoogle Scholar
- 61.V.A. Bogatyrev, M.M. Bubnov, E.M. Dianov, A.S. Kurkov, P.V. Mamyshev, A.M. Prokhorov, S.D. Rumyantsev, V.A. Semenov, S.L. Semenov, A.A. Sysoliatin, S.V. Chernikov, A.N. Guryanov, G.G. Devyatykh, S.I. Miroshnichenko, A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561–565 (1991)CrossRefADSGoogle Scholar
- 62.S.V. Chernikov, J.R. Taylor, R. Kashyap, Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression. Electron. Lett. 30, 433–435 (1994)CrossRefGoogle Scholar
- 63.S.V. Chernikov, J.R. Taylor, R. Kashyap, Comblike dispersion-profiled fiber for soliton pulse train generation. Opt. Lett. 19, 539–541 (1994)CrossRefADSGoogle Scholar
- 64.L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)CrossRefADSGoogle Scholar
- 65.B. Kibler, R. Fischer, R.A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D.N. Neshev, J.M. Dudley, Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre. Electron. Lett. 43, 915–916 (2007)CrossRefGoogle Scholar
- 66.A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, H.M. Crespo, Sub-two cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers. Opt. Lett. 34, 3851–3853 (2009)CrossRefADSGoogle Scholar
- 67.A. Hasegawa, Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9, 288–290 (1984)CrossRefADSGoogle Scholar
- 68.K. Tai, A. Hasegawa, A. Tomita, Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)CrossRefADSGoogle Scholar
- 69.S. Pitois, J. Fatome, G. Millot, Generation of a 160 GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal. Opt. Lett. 27, 1729–1731 (2002)CrossRefADSGoogle Scholar
- 70.J. Fatome, S. Pitois, G. Millot, 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers. IEEE J. Quantum Electron. 42, 1038–1046 (2006)CrossRefADSGoogle Scholar
- 71.J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, E. Samain, Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source. Opt. Commun. 283, 2425–2429 (2010)CrossRefADSGoogle Scholar
- 72.I. El Mansouri, J. Fatome, C. Finot, M. Lintz, S. Pitois, All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications. IEEE Photon. Technol. Lett. 23, 1487–1489 (2011)CrossRefADSGoogle Scholar
- 73.C. Finot, J. Fatome, S. Pitois, G. Millot, All-fibered high-quality low duty-cycle 20-GHz and 40-GHz picosecond pulse sources. IEEE Photon. Technol. Lett. 19, 1711–1713 (2007)CrossRefADSGoogle Scholar
- 74.F.M. Mitschke, L.F. Mollenauer, Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRefADSGoogle Scholar
- 75.J.P. Gordon, Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)CrossRefADSGoogle Scholar
- 76.E.R. Andresen, V. Birkedal, J. Thogersen, S.R. Keiding, Tunable light source for coherent anti-Stockes Raman scattering microspectroscopy based on the soliton self-frequency shift. Opt. Lett. 31, 1328–1330 (2006)CrossRefADSGoogle Scholar
- 77.T. Johnson, S. Diddams, Mid-Infrared Upconversion Spectroscopy Based on a Yb: Fiber Femtosecond Laser. Appl. Phys. B 107, 31–39 (2012)CrossRefADSGoogle Scholar
- 78.D.V. Skryabin, F. Luan, J.C. Knight, J.S. Russell, Soliton self-frequency shift cancellation in photonic crystal fibers. Science 201, 1705–1708 (2003)CrossRefADSGoogle Scholar
- 79.P.V. Mamyshev, P.G.J. Wigley, J. Wilson, G.I. Stegeman, V.A. Semenov, E.M. Dianov, S.I. Miroshnichenko, Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. Phys. Rev. Lett. 71, 73–76 (1993)CrossRefADSGoogle Scholar
- 80.R. Pant, A.C. Judge, E.C. Magi, B.T. Kuhlmey, M. de Sterke, B.J. Eggleton, Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. J. Opt. Soc. Am. B 27, 1894–1901 (2010)CrossRefADSGoogle Scholar
- 81.J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Modern Phys. 78, 1135–1184 (2006)CrossRefADSGoogle Scholar
- 82.K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fibers. Phys. Rev.Lett. 90, 113904(4) (2003)Google Scholar
- 83.D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)CrossRefADSGoogle Scholar
- 84.B. Kibler, K. Hammani, C. Michel, C. Finot, A. Picozzi, Rogue waves, rational solitons and wave turbulence theory. Phys. Lett. A 375, 3149–3155 (2011)CrossRefADSzbMATHGoogle Scholar
- 85.J.M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, F. Dias, Extreme events in optics: challenges of the MANUREVA project. Eur. Phys. J. Special Topics 185, 125–133 (2010)CrossRefADSGoogle Scholar
- 86.C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)zbMATHGoogle Scholar
- 87.M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M.I. Kolobov, M. Douay, Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374, 691–695 (2010)CrossRefADSzbMATHGoogle Scholar
- 88.G. Genty, C.M. de Sterke, O. Bang, F. Dias, N.N. Akhmediev, J.M. Dudley, Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 374, 989–996 (2010)CrossRefADSzbMATHGoogle Scholar
- 89.K. Hammani, B. Kibler, C. Finot, A. Picozzi, Emergence of rogue waves from optical turbulence. Phys. Lett. A 374, 3585–3589 (2010)CrossRefADSzbMATHGoogle Scholar
- 90.E.A. Kuznetsov, Solitons in a parametrically unstable plasma. Doklady Akamemii Nauk SSSR 22, 507–508 (1977)Google Scholar
- 91.N.N. Akhmediev, V.I. Korneev, Modulation instability and periodic-solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
- 92.J.M. Dudley, G. Genty, F. Dias, B. Kibler, N.N. Akhmediev, Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)CrossRefADSGoogle Scholar
- 93.G. Genty, J.M. Dudley, Route to coherent supercontinuum generation in the long pulse regime. IEEE J. Quantum Electron. 45, 1331–1335 (2009)CrossRefADSGoogle Scholar
- 94.D.R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902(4) (2008)Google Scholar
- 95.K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J.M. Dudley, G. Millot, Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011)CrossRefADSGoogle Scholar
- 96.D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
- 97.B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790–795 (2010)CrossRefADSGoogle Scholar
- 98.M. Erkintalo, G. Genty, B. Wetzel, J.M. Dudley, Akhmediev breather evolution in optical fiber for realistic initial conditions. Phys. Lett. A 375, 2029–2034 (2011)CrossRefADSzbMATHGoogle Scholar
- 99.M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley, G. Genty, Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901(4) (2011)Google Scholar
- 100.N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 101.A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015(6) (2012)Google Scholar
- 102.T. Kawata, H. Inoue, Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Japan 44, 1722–1729 (1978)CrossRefADSMathSciNetGoogle Scholar
- 103.Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)ADSMathSciNetGoogle Scholar
- 104.B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J.M. Dudley, Observation of Kuznetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2, 463 (2012). doi: 10.1038/srep00463
- 105.B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 883 (2012). doi: 10.1038/srep00882
- 106.B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, G. Millot, Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator. Phys. Rev. A 89, 023821 (2014)CrossRefADSGoogle Scholar
- 107.B. Frisquet, B. Kibler, G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032(9) (2013)Google Scholar
- 108.A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T.F. Krauss, B.J. Eggleton, Observation of soliton compression in silicon photonic crystals. Nature Commun. 5, 3160 (2014). doi: 10.1038/ncomms4160