Nonlinear Optics for Photonic Quantum Networks

  • Alex S. Clark
  • Lukas G. Helt
  • Matthew J. Collins
  • Chunle Xiong
  • Kartik Srinivasan
  • Benjamin J. Eggleton
  • Michael J. Steel
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 194)

Abstract

By harnessing quantum mechanical effects we can create technology with greatly improved functionality including enhanced sensing, exponentially faster computing, the simulation of previously inaccessible quantum systems, and the secure transfer of information. In our ever more connected world, it is important that we can communicate securely, and as technology develops into the quantum regime it will become important for distant quantum processors to exchange information over a quantum network. Here we discuss how quantum information can be encoded and transferred around a such a network. We concentrate on the use of nonlinear optics to generate and manipulate photons, and present schemes for fully secure quantum communication.

References

  1. 1.
    W.K. Wooters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSGoogle Scholar
  2. 2.
    D. Dieks, Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)ADSGoogle Scholar
  3. 3.
    W.J. Munro, K. Nemoto, T.P. Spiller, Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)ADSGoogle Scholar
  4. 4.
    N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon. 3, 95–98 (2009)ADSGoogle Scholar
  5. 5.
    V. Venkataraman, K. Saha, A.L. Gaeta, Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2013)ADSGoogle Scholar
  6. 6.
    J.H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)ADSGoogle Scholar
  7. 7.
    N.K. Langford, S. Ramelow, R. Prevedel, W.J. Munro, G.J. Milburn, A. Zeilinger, Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011)ADSGoogle Scholar
  8. 8.
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)MATHGoogle Scholar
  9. 9.
    A. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMATHMathSciNetGoogle Scholar
  10. 10.
    A.K. Ekert, J.G. Rarity, P.R. Tapster, G.M. Palma, Practical quantum cryptography based on two-photon entanglement. Phys. Rev. Lett. 69, 1293–1295 (1992)ADSGoogle Scholar
  11. 11.
    J. Ye, D.W. Vernooy, H.J. Kimble, Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999)ADSGoogle Scholar
  12. 12.
    J.I. Cirac, P. Zoller, Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSGoogle Scholar
  13. 13.
    S. Prawer, A.D. Greentree, Diamond for quantum computing. Science 320, 1601–1602 (2008)Google Scholar
  14. 14.
    A. Politi, M. Cryan, J. Rarity, S. Yu, J. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)ADSGoogle Scholar
  15. 15.
    J. Brendel, N. Gisin, W. Tittel, H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)ADSGoogle Scholar
  16. 16.
    P.C. Humphreys, B.J. Metcalf, J.B. Spring, M. Moore, X.-M. Jin, M. Barbieri, S. Kolthammer, I.A. Walmsley, Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501 (2013)ADSGoogle Scholar
  17. 17.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSGoogle Scholar
  18. 18.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)Google Scholar
  19. 19.
    J.G. Rarity, P.R. Tapster, Fourth order interference in parametric down conversion. J. Opt. Soc. Am. B 6, 1221 (1989)ADSGoogle Scholar
  20. 20.
    C. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the International Conference on Computers, Systems & Signal Processing (1984), pp. 175–179Google Scholar
  21. 21.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2004)Google Scholar
  22. 22.
    C. Santori, D. Fattal, J. Vucković, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)ADSGoogle Scholar
  23. 23.
    S.V. Polyakov, A. Muller, E.B. Flagg, A. Ling, N. Borjemscaia, E. Van Keuren, A. Migdall, G.S. Solomon, Coalescence of single photons emitted by disparate single-photon sources: the example of InAs quantum dots and parametric down-conversion sources. Phys. Rev. Lett. 107, 157402 (2011)ADSGoogle Scholar
  24. 24.
    A. Huck, S. Kumar, A. Shakoor, U.L. Andersen, Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011)ADSGoogle Scholar
  25. 25.
    F. Jelezko, J. Wrachtrup, Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006)ADSGoogle Scholar
  26. 26.
    P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths. Phys. Rev. B 89, 035313 (2014)ADSGoogle Scholar
  27. 27.
    R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University Press, New York, 2000)Google Scholar
  28. 28.
    S. Scheel, Single-photon sources-an introduction. J. Mod. Opt. 56, 141–160 (2009)ADSMATHGoogle Scholar
  29. 29.
    S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, H. Zbinden, High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6, 163–164 (2004)ADSGoogle Scholar
  30. 30.
    T. Pittman, B. Jacobs, J. Franson, Heralding single photons from pulsed parametric down-conversion. Opt. Commun. 246, 545–550 (2005)ADSGoogle Scholar
  31. 31.
    O. Alibart, D.B. Ostrowsky, P. Baldi, S. Tanzilli, High-performance guided-wave asynchronous heralded single-photon source. Opt. Lett. 30, 1539–1541 (2005)ADSGoogle Scholar
  32. 32.
    A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, M. Matsui, Heralded single photon source at 1550 nm from pulsed parametric down conversion. J. Mod. Opt. 54, 467–471 (2007)ADSGoogle Scholar
  33. 33.
    P. Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. U’Ren, C. Silberhorn, I. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)ADSGoogle Scholar
  34. 34.
    Z.H. Levine, J. Fan, J. Chen, A. Ling, A. Migdall, Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide. Opt. Express 18, 3708–3718 (2010)Google Scholar
  35. 35.
    M.D. Cunha Pereira, F.E. Becerra, B.L. Glebov, J. Fan, S.W. Nam, A. Migdall, Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion. Opt. Lett. 38, 1609–11 (2013)Google Scholar
  36. 36.
    S. Ramelow, A. Mech, M. Giustina, Highly efficient heralding of entangled single photons. Opt. Express 21, 6707–6717 (2013)ADSGoogle Scholar
  37. 37.
    E. Goldschmidt, M. Eisaman, J. Fan, S. Polyakov, A. Migdall, Spectrally bright and broad fiber-based heralded single-photon source. Phys. Rev. A 78, 013844 (2008)ADSGoogle Scholar
  38. 38.
    A.R. McMillan, J. Fulconis, M. Halder, C. Xiong, J.G. Rarity, W.J. Wadsworth, Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm. Opt. Express 17, 6156–6165 (2009)ADSGoogle Scholar
  39. 39.
    C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, C. Silberhorn, High-performance single-photon generation with commercial-grade optical fiber. Phys. Rev. A 83, 031806 (2011)ADSGoogle Scholar
  40. 40.
    L. Yang, X. Ma, X. Guo, L. Cui, X. Li, Characterization of a fiber-based source of heralded single photons. Phys. Rev. A 83, 053843 (2011)ADSGoogle Scholar
  41. 41.
    M. Davanço, J.R. Ong, A.B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W.M.J. Green, S. Mookherjea, K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett. 100, 261104 (2012)ADSGoogle Scholar
  42. 42.
    J. Spring, P. Salter, B. Metcalf, P. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. Langford, W. Kolthammer, M. Booth, I. Walmsley, On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013)ADSGoogle Scholar
  43. 43.
    A. Christ, C. Silberhorn, Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A 85, 023829 (2012)ADSGoogle Scholar
  44. 44.
    M.J. Collins, C. Xiong, I.H. Rey, T.D. Vo, J. He, S. Shahnia, C. Reardon, T.F. Krauss, M.J. Steel, A.S. Clark, B.J. Eggleton, Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4, 2582 (2013)ADSGoogle Scholar
  45. 45.
    A. Yariv, Quantum Electronics, 2nd edn. (Wiley, New York, 1975)Google Scholar
  46. 46.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, Burlington, 2007)Google Scholar
  47. 47.
    L.G. Helt, M. Liscidini, J.E. Sipe, How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices. J. Opt. Soc. Am. B 29, 2199–2212 (2012)ADSGoogle Scholar
  48. 48.
    H. Takesue, K. Shimizu, Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes. Opt. Commun. 283, 276–287 (2010)ADSGoogle Scholar
  49. 49.
    M.J. Stevens, S. Nam, in Single-Photon Generation and Detection—Physics and Applications, ed. by J.F.A. Migdall, S. Polyakov, J.C. Bienfang. Photon Statistics, Measurements, and Measurement Tools (Academic Press, Burlington, 2013)Google Scholar
  50. 50.
    J.G. Rarity, J. Fulconis, J. Duligall, W.J. Wadsworth, P.S.J. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534 (2005)ADSGoogle Scholar
  51. 51.
    E. Engin, D. Bonneau, C.M. Natarajan, A.S. Clark, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J.L. O’Brien, M.G. Thompson, Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21, 27826–27834 (2013)ADSGoogle Scholar
  52. 52.
    A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, C. Silberhorn, in Single-Photon Generation and Detection—Physics and Applications, ed. by J.F.A. Migdall, S. Polyakov, J.C. Bienfang. Parametric Down-Conversion (Academic Press, Burlington, 2013)Google Scholar
  53. 53.
    P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)ADSGoogle Scholar
  54. 54.
    A. Peruzzo, M. Lobino, J. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. Thompson, J. O’Brien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)ADSGoogle Scholar
  55. 55.
    A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nature Phys. 8, 285–291 (2012)ADSGoogle Scholar
  56. 56.
    P. Kwiat, Nonclassical Effects from Spontaneous Parametric Down-conversion: Adventures in Quantum Wonderland, Ph.D thesis, http://research.physics.illinois.edu/QI/Photonics/theses.html, 1993
  57. 57.
    A. Halevy, E. Megidish, L. Dovrat, H. Eisenberg, P. Becker, L. Bohatý, The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion. Opt. Express 19, 20420–20434 (2011)ADSGoogle Scholar
  58. 58.
    R. Rangarajan, M. Goggin, P. Kwiat, Optimizing type-I polarization-entangled photons. Opt. Express 17, 18920–18933 (2009)ADSGoogle Scholar
  59. 59.
    M. Fiorentino, S. Spillane, R. Beausoleil, T. Roberts, P. Battle, M. Munro, Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. Opt. Express 15, 7479–7488 (2007)ADSGoogle Scholar
  60. 60.
    T. Zhong, F. Wong, T. Roberts, P. Battle, High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide. Opt. Express 17, 12019–12030 (2009)ADSGoogle Scholar
  61. 61.
    S.V. Zhukovsky, L.G. Helt, P. Abolghasem, D. Kang, J.E. Sipe, A.S. Helmy, Bragg reflection waveguides as integrated sources of entangled photon pairs. J. Opt. Soc. Am. B 29, 2516–2523 (2012)ADSGoogle Scholar
  62. 62.
    R.T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A.D. Frera, A. Tosi, L.G. Helt, S.V. Zhukovsky, J.E. Sipe, G. Weihs, A.S. Helmy, T. Jennewein, Inherent polarization entanglement generated from a monolithic semiconductor chip. Sci. Rep. 3, 2314 (2013)Google Scholar
  63. 63.
    A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B.J. Bijlani, A.S. Helmy, J.P. Torres, Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt. Express 21, 10841–10849 (2013)ADSGoogle Scholar
  64. 64.
    Z. Yang, P. Chak, A.D. Bristow, H.M. van Driel, R. Iyer, J.S. Aitchison, A.L. Smirl, J.E. Sipe, Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32, 826–828 (2007)ADSGoogle Scholar
  65. 65.
    R. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, Burlington, 2003)Google Scholar
  66. 66.
    M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, M. Asobe, Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled linbO3 waveguide. Opt. Lett. 35, 1239–1241 (2010)ADSGoogle Scholar
  67. 67.
    A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. Ostrowsky, O. Alibart, S. Tanzilli, A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength. New J. Phys. 12, 103005 (2010)ADSGoogle Scholar
  68. 68.
    M. Lobino, G. Marshall, C. Xiong, A. Clark, D. Bonneau, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. Thompson, B. Eggleton, J. O’Brien, Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide. Appl. Phys. Lett. 99, 081110 (2011)ADSGoogle Scholar
  69. 69.
    A.M. Brańczyk, A. Fedrizzi, T.M. Stace, T.C. Ralph, A.G. White, Engineered optical nonlinearity for quantum light sources. Opt. Express 19, 55–65 (2011)ADSGoogle Scholar
  70. 70.
    H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, J.-W. Pan, Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photon. 5, 628–632 (2011)Google Scholar
  71. 71.
    C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. Riedmatten, N. Gisin, Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011)ADSGoogle Scholar
  72. 72.
    X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, J.-W. Pan, Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008)ADSGoogle Scholar
  73. 73.
    E. Pomarico, B. Sanguinetti, C. Osorio, H. Herrmann, R. Thew, Engineering integrated pure narrow-band photon sources. New J. Phys 14, 033008 (2012)ADSGoogle Scholar
  74. 74.
    A. McMillan, Y. Huang, B. Bell, A.S. Clark, P. Kumar, J. Rarity, in Single-Photon Generation and Detection—Physics and Applications, chap. 12, ed. by A. Migdall, S. Polyakov, J. Fan. Four-Wave Mixing in Single-Mode Optical Fibers (Academic Press, Burlington, 2013), pp. 411–465Google Scholar
  75. 75.
    C. Xiong, Nonlinearity in Photonic Crystal Fibres. Ph.D thesis, University of Bath, 2008Google Scholar
  76. 76.
    J. Sharping, M. Fiorentino, P. Kumar, Observation of twin-beam-type quantum correlation in optical fiber. Opt. Lett. 26, 367–369 (2001)ADSGoogle Scholar
  77. 77.
    M. Fiorentino, P. Voss, J. Sharping, P. Kumar, All-fiber photon pair source for quantum communications. IEEE Photon. Tech. Lett. 14, 983–985 (2002)ADSGoogle Scholar
  78. 78.
    J. Sharping, J. Chen, X. Li, P. Kumar, Quantum correlated twin photons from microstructured fiber. Opt. Express 12, 3086–3094 (2004)ADSGoogle Scholar
  79. 79.
    X. Li, P. Voss, J. Sharping, P. Kumar, Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)ADSGoogle Scholar
  80. 80.
    H. Takesue, K. Inoue, 1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber suppression of noise photons by cooling fiber. Opt. Express 13, 7832–7839 (2005)ADSGoogle Scholar
  81. 81.
    S. Dyer, M. Stevens, B. Baek, S. Nam, High-efficiency, ultra low-noise all-fiber photon-pair source. Opt. Express 16, 9966–9977 (2008)ADSGoogle Scholar
  82. 82.
    J. Fulconis, O. Alibart, J. O’Brien, W. Wadsworth, J. Rarity, Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007)ADSGoogle Scholar
  83. 83.
    J. Fulconis, O. Alibart, W. Wadsworth, J. Rarity, Quantum interference with photon pairs using two micro-structured fibers. New J. Phys. 9, 276 (2007)Google Scholar
  84. 84.
    M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. Wadsworth, J. Rarity, Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources. Opt. Express 17, 4670–4676 (2009)ADSGoogle Scholar
  85. 85.
    A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, A. Olivier, C. Xiong, W. Wadsworth, J. Rarity, Intrinsically narrowband pair photon generation in microstructured fibres. New J. Phys. 13, 065009 (2011)ADSGoogle Scholar
  86. 86.
    J. Fan, A. Dogariu, L. Wang, Generation of correlated photon pairs in a microstructure fiber. Opt. Lett. 30, 1530–1532 (2005)ADSGoogle Scholar
  87. 87.
    J. Chen, K. Lee, C. Liang, P. Kumar, Fiber-based telecom-band degenerate-frequency source of entangled photon pairs. Opt. Lett. 31, 2798–2799 (2006)ADSGoogle Scholar
  88. 88.
    C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D.-Y. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, J. O’Brien, Generation of correlated photon pairs in a chalcogenide As2S3 waveguide. Appl. Phys. Lett. 98, 051101 (2011)ADSGoogle Scholar
  89. 89.
    M. Collins, A. Clark, J. He, D.-Y. Choi, R. Williams, A. Judge, S. Madden, M. Withford, M. Steel, B. Luther-Davies, C. Xiong, B. Eggleton, Low raman-noise correlated photon-pair generation in a dispersion engineered chalcogenide As2S3 planar waveguide. Opt. Lett. 37, 3393–3395 (2012)ADSGoogle Scholar
  90. 90.
    J. He, C. Xiong, A. Clark, M. Collins, X. Gai, D.-Y. Choi, S. Madden, B. Luther-Davies, B. Eggleton, Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5 As24 Se64.5 nanowire. J. Appl. Phys. 112, 123101 (2012)ADSGoogle Scholar
  91. 91.
    J. Sharping, K. Lee, M. Foster, A. Turner, B. Schmidt, M. Lipson, A. Gaeta, P. Kumar, Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14, 12388–12393 (2006)ADSGoogle Scholar
  92. 92.
    K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt. Express 16, 20368–20373 (2008)ADSGoogle Scholar
  93. 93.
    S. Clemmen, K. Huy, W. Bogaerts, R. Baets, P. Emplit, S. Massar, Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 (2009)ADSGoogle Scholar
  94. 94.
    K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Indistinguishable photon pair generation using two independent silicon wire waveguides. New J. Phys. 13, 065005 (2011)ADSGoogle Scholar
  95. 95.
    S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. van, Thourhout, R. Baets, P. Emplit, S. Massar, Generation of correlated photons in hydrogenated amorphous-silicon waveguides. Opt. Lett. 35, 3483–3485 (2010)Google Scholar
  96. 96.
    B. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nature Photon. 5, 141–148 (2011)ADSGoogle Scholar
  97. 97.
    S. Azzini, D. Grassani, M. Strain, M. Sorel, L. Helt, J. Sipe, M. Liscidini, M. Galli, D. Bajoni, Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012)ADSGoogle Scholar
  98. 98.
    C. Xiong, C. Monat, M. Collins, L. Tranchant, D. Petiteau, A. Clark, C. Grillet, G. Marshall, M. Steel, J. Li, L. O’Faolain, T. Krauss, B. Eggleton, Characteristics of correlated photon pairs generated in ultra-compact silicon slow-light photonic crystal waveguides. IEEE J. Sel. Topics Quantum Electron. 18, 1676–1683 (2012)Google Scholar
  99. 99.
    N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, M. Notomi, Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. Opt. Express 21, 8596–8604 (2013)Google Scholar
  100. 100.
    W. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, A silicon-chip source of bright photon-pair comb. arXiv:1210.4455 (2012)Google Scholar
  101. 101.
    A. Clark, C. Husko, M. Collins, G. Lehoucq, S. Xavier, A. De, Rossi, S. Combrié, C. Xiong, B. Eggleton, Heralded single-photon source in a III–V photonic crystal. Opt. Lett. 38, 649–651 (2013)Google Scholar
  102. 102.
    C. Husko, A. Clark, M. Collins, A. De, Rossi, S. Combrié, G. Lehoucq, I. Rey, T. Krauss, C. Xiong, B. Eggleton, Multi-photon absorption limits to heralded single photon sources. Sci. Rep. 3, 3087 (2013)Google Scholar
  103. 103.
    J. Li, T.P. White, L. O’Faolain, A. Gomez-Iglesias, T.F. Krauss, Systematic design of flat band slowlight in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008)ADSGoogle Scholar
  104. 104.
    T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys. 40, 2666–2670 (2007)ADSGoogle Scholar
  105. 105.
    J. Li, L. O’Faolain, I.H. Rey, T.F. Krauss, Four-wave mixing in photonic crystal waveguides: slow light enhancements and limitations. Opt. Express 19, 4458–4463 (2011)ADSGoogle Scholar
  106. 106.
    A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Coupled-resonator optical waveguide, a proposal and analysis. Opt. Lett. 24, 711–713 (1999)Google Scholar
  107. 107.
    R. Kumar, J. Ong, J. Recchio, S. Mookherjea, K. Srinivasan, Wide-span and tunable-wavelength photon pairs around 1.55 μm from a silicon nanophotonic chip, 1304:4989v1 (2013)Google Scholar
  108. 108.
    Z. Yang, M. Liscidini, J. Sipe, Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach. Phys. Rev. A 77, 033808 (2008)ADSGoogle Scholar
  109. 109.
    L.G. Helt, E.Y. Zhu, M. Liscidini, L. Qian, J.E. Sipe, Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber. Opt. Lett. 34, 2138–2140 (2009)ADSGoogle Scholar
  110. 110.
    M. Liscidini, L.G. Helt, J.E. Sipe, Asymptotic fields for a Hamiltonian treatment of nonlinear electromagnetic phenomena. Phys. Rev. A 85, 013833 (2012)ADSGoogle Scholar
  111. 111.
    P. Kwiat, E. Waks, A. White, Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, 773–776 (1999)ADSGoogle Scholar
  112. 112.
    S.V. Zhukovsky, L.G. Helt, D. Kang, P. Abolghasem, A.S. Helmy, J.E. Sipe, Generation of maximally-polarization-entangled photons on a chip. Phys. Rev. A 85, 013838 (2012)ADSGoogle Scholar
  113. 113.
    J. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  114. 114.
    J. Clauser, M. Horne, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSGoogle Scholar
  115. 115.
    T. Humble, W. Grice, Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates. Phys. Rev. A 77, 022312 (2008)ADSGoogle Scholar
  116. 116.
    C. Law, J. Eberly, Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004)ADSGoogle Scholar
  117. 117.
    W. Grice, A. URen, I. Walmsley, Eliminating frequency and space-time correlations in multiphoton states. Phys. Rev. A 64, 063815 (2001)Google Scholar
  118. 118.
    K. Garay-Palmett, H. McGuinness, Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express 15, 2915–2920 (2007)Google Scholar
  119. 119.
    O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, I. Walmsley, Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603 (2009)ADSGoogle Scholar
  120. 120.
    Z. Walton, A. Sergienko, B. Saleh, M. Teich, Generation of polarization-entangled photon pairs with arbitrary joint spectrum. Phys. Rev. A 70, 052317 (2004)ADSGoogle Scholar
  121. 121.
    L.G. Helt, Z. Yang, M. Liscidini, J.E. Sipe, Spontaneous four-wave mixing in microring resonators. Opt. Lett. 35, 3006–3008 (2010)ADSGoogle Scholar
  122. 122.
    B.J. Smith, P. Mahou, O. Cohen, J.S. Lundeen, I.A. Walmsley, Photon pair generation in birefringent optical fibers. Opt. Express 17, 23589–23602 (2009)ADSGoogle Scholar
  123. 123.
    I. Jizan, A. Clark, L. Helt, M. Collins, E. Mägi, C. Xiong, M. Steel, B. Eggleton, High-resolution measurement of spectral quantum correlations in the telecommunication band. Opt. Commun. 327, 45–48 (2014)ADSGoogle Scholar
  124. 124.
    J.M. Lukens, A. Dezfooliyan, C. Langrock, M.M. Fejer, D.E. Leaird, A.M. Weiner, Biphoton manipulation with a fiber-based pulse shaper. Opt. Lett. 38, 4652–4655 (2013)ADSGoogle Scholar
  125. 125.
    M. Avenhaus, A. Eckstein, P.J. Mosley, C. Silberhorn, Fiber-assisted single-photon spectrograph. Opt. Lett. 34, 2873–2875 (2009)ADSGoogle Scholar
  126. 126.
    M. Liscidini, J.E. Sipe, Stimulated emission tomography. Phys. Rev. Lett. 111, 193602 (2013)ADSGoogle Scholar
  127. 127.
    A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J.E. Sipe, M. Liscidini, S. Ducci, High-resolution spectral characterization of two photon states via classical measurements. Laser Photonics Rev. 8, L76–L80 (2014)Google Scholar
  128. 128.
    A. Christ, K. Laiho, A. Eckstein, K.N. Cassemiro, C. Silberhorn, Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011)ADSGoogle Scholar
  129. 129.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)ADSMathSciNetGoogle Scholar
  130. 130.
    R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)ADSMathSciNetGoogle Scholar
  131. 131.
    R.H. Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)ADSGoogle Scholar
  132. 132.
    A. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 1–4 (2002)Google Scholar
  133. 133.
    J.H. Shapiro, F.N. Wong, On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. Opt. Lett. 32, 2698–2700 (2007)ADSGoogle Scholar
  134. 134.
    X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011)ADSGoogle Scholar
  135. 135.
    T. Jennewein, M. Barbieri, A.G. White, Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis. J. Mod. Opt. 58, 276–287 (2011)ADSMATHGoogle Scholar
  136. 136.
    C. Xiong, T.D. Vo, M.J. Collins, J. Li, T.F. Krauss, M.J. Steel, A.S. Clark, B.J. Eggleton, Bidirectional multiplexing of heralded single photons from a silicon chip. Opt. Lett. 38, 5176–5179 (2013)ADSGoogle Scholar
  137. 137.
    T. Meany, L.A. Ngah, M.J. Collins, A.S. Clark, R.J. Williams, B.J. Eggleton, M.J. Steel, M.J. Withford, O. Alibart, S. Tanzilli, Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev. 8, L42–L46 (2014)Google Scholar
  138. 138.
    L. Mazzarella, F. Ticozzi, A.V. Sergienko, G. Vallone, P. Villoresi, Asymmetric architecture for heralded single-photon sources. Phys. Rev. A 88, 023848 (2013)ADSGoogle Scholar
  139. 139.
    J. Mower, D. Englund, Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011)ADSGoogle Scholar
  140. 140.
    P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)ADSGoogle Scholar
  141. 141.
    J. Huang, P. Kumar, Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)ADSGoogle Scholar
  142. 142.
    S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)ADSGoogle Scholar
  143. 143.
    A.P. Vandevender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004)ADSMATHGoogle Scholar
  144. 144.
    M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55 microm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004)ADSGoogle Scholar
  145. 145.
    M.G. Raymer, K. Srinivasan, Manipulating the color and shape of single photons. Phys. Today 65, 32 (2012)Google Scholar
  146. 146.
    C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, M.M. Fejer, H. Takesue, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005)ADSGoogle Scholar
  147. 147.
    J. Pelc, L. Ma, C. Phillips, Q. Zhang, Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)ADSGoogle Scholar
  148. 148.
    J.S. Pelc, C. Langrock, Q. Zhang, M.M. Fejer, Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. Opt. Lett. 35, 2804–2806 (2010)Google Scholar
  149. 149.
    S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)ADSGoogle Scholar
  150. 150.
    M. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nature Photon. 4, 786–791 (2010)ADSGoogle Scholar
  151. 151.
    M.T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, K. Srinivasan, Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. Phys. Rev. Lett. 107, 083602 (2011)ADSGoogle Scholar
  152. 152.
    H. Takesue, Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett. 101, 173901 (2008)ADSGoogle Scholar
  153. 153.
    R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011)Google Scholar
  154. 154.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)Google Scholar
  155. 155.
    K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012)ADSGoogle Scholar
  156. 156.
    C. McKinstrie, J. Harvey, S. Radic, M. Raymer, Translation of quantum states by four-wave mixing in fibers. Opt. Express 13, 9131–9142 (2005)ADSGoogle Scholar
  157. 157.
    K. Uesaka, K.K.-Y. Wong, Wavelength exchange in a highly nonlinear dispersion-shifted fibre: theory and experiments. IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002)Google Scholar
  158. 158.
    H.J. McGuinness, M.G. Raymer, C.J. McKinstrie, S. Radic, Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010)ADSGoogle Scholar
  159. 159.
    A.H. Gnauck, R.M. Jopson, C.J. McKinstrie, J.C. Centanni, S. Radic, Demonstration of low-noise frequency conversion by bragg scattering in a fiber. Opt. Express 14, 8989–8994 (2006)ADSGoogle Scholar
  160. 160.
    A.S. Clark, S. Shahnia, M.J. Collins, C. Xiong, B.J. Eggleton, High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013)ADSGoogle Scholar
  161. 161.
    A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, Electro-optically tunable microring resonators in lithium niobate. Nature Photon. 1, 407–410 (2007)Google Scholar
  162. 162.
    L. Lanco, S. Ducci, J.P. Likforman, M. Ravaro, P. Filloux, X. Marcadet, G. Leo, V. Berger, Backward difference frequency generation in an AlGaAs waveguide. Appl. Phys. Lett. 89, 031106 (2006)ADSGoogle Scholar
  163. 163.
    J. Han, P. Abolghasem, B.J. Bijlani, A. Helmy, Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides. Opt. Lett. 34, 3656–3658 (2009)ADSGoogle Scholar
  164. 164.
    K. Rivoire, Z. Lin, F. Hatami, W.T. Masselink, J. Vukovi, Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express 17, 22609–22615 (2009)Google Scholar
  165. 165.
    C. Xiong, W. Pernice, K.K. Ryu, C. Schuck, K.Y. Fong, T. Palacios, H.X. Tang, Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 19, 10462–10470 (2011)ADSGoogle Scholar
  166. 166.
    Y. Ota, K. Watanabe, S. Iwamoto, Y. Arakawa, Nanocavity-based self-frequency conversion laser. Opt. Express 21, 19778–19789 (2013)ADSGoogle Scholar
  167. 167.
    P.S. Kuo, J. Bravo-Abad, G.S. Solomon, Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 5, 3109 (2014)ADSGoogle Scholar
  168. 168.
    I. Agha, M. Davanço, B. Thurston, K. Srinivasan, Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiN(x) waveguides. Opt. Lett. 37, 2997–2999 (2012)ADSGoogle Scholar
  169. 169.
    I. Agha, S. Ates, M. Davanço, K. Srinivasan, A chip-scale, telecommunications-band frequency conversion interface for quantum emitters. Opt. Express 21, 1476–1478 (2013)Google Scholar
  170. 170.
    X. Liu, R. Osgood, Y. Vlasov, W. Green, Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 2–5 (2010)Google Scholar
  171. 171.
    S. Zlatanovic, J. Park, S. Moro, Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics 4, 561–564 (2010)ADSGoogle Scholar
  172. 172.
    D. Kielpinski, J.F. Corney, H.M. Wiseman, Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011)ADSGoogle Scholar
  173. 173.
    B. Brecht, A. Eckstein, A. Christ, H. Suche, C. Silberhorn, From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides. New J. Phys. 13, 065029 (2011)ADSGoogle Scholar
  174. 174.
    C.J. McKinstrie, L. Mejling, M.G. Raymer, K. Rottwitt, Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing. Phys. Rev. A 85, 053829 (2012)ADSGoogle Scholar
  175. 175.
    D. Reddy, M. Raymer, C. McKinstrie, Efficient sorting of quantum-optical wave packets by temporal-mode interferometry. Opt. Lett. 39, 2924–2927 (2014)ADSGoogle Scholar
  176. 176.
    N. Gisin, G. Ribordy, W. Tittel, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSGoogle Scholar
  177. 177.
    C. Bennet, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetGoogle Scholar
  178. 178.
    V. Scarani, A. Acin, G. Ribordy, N. Gisin, Quantum cryptography protocol robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)ADSGoogle Scholar
  179. 179.
    ID-Quantique website, retrieved on 6. Aug 2012Google Scholar
  180. 180.
    P. Eraerds, N. Walenta, M. Legre, N. Gisin, H. Zbinden, Quantum key distribution and 1gbps data encryption over a single fiber. New J. Phys. 12, 063027 (2010)ADSGoogle Scholar
  181. 181.
    I. Choi, R.J. Young, D. Townsend, Quantum key distribution on a 10Gb/s WDM-PON. Opt. Express 18, 9600–9612 (2010)Google Scholar
  182. 182.
    NICT News, No. 401 Feb 2011 (2011)Google Scholar
  183. 183.
    K. Inoue, E. Wake, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)ADSGoogle Scholar
  184. 184.
    N. Namekate, H. Takesue, Y. Honjo, T. Tokura, S. Inoue, High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. Opt. Express 19, 10632–10639 (2011)Google Scholar
  185. 185.
    S. Wang, W. Chen, Z.-Q. Guo, Z.-Q. Yin, W.-H. Li, Z. Zhou, G.-C. Guo, Z.-F. Han, 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008–1011 (2012)ADSGoogle Scholar
  186. 186.
    NuCrypt website, retrieved on 6. Aug 2012Google Scholar
  187. 187.
    SECOQC, Business White Paper: Quantum Cryptography: An Innovation in the Domain of Secure Information Transmission (2008)Google Scholar
  188. 188.
    J.F. Dynes, H. Takesue, Z.L. Yuan, A.W. Sharpe, K. Harada, K. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, A.J. Shields, Efficient entanglement distribution over 200 kilometers. Opt. Express 17, 11440–11449 (2009)ADSGoogle Scholar
  189. 189.
    R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger, Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481 (2007)ADSGoogle Scholar
  190. 190.
    N. Namekate, H. Takesue, Y. Honjo, T. Tokura, S. Inoue, High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. Opt. Express 19, 10632–10639 (2011)ADSGoogle Scholar
  191. 191.
    J.G. Rarity, P.R. Tapster, P.M. Gorman, P. Knight, Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4, 82 (2002)ADSGoogle Scholar
  192. 192.
    J.E. Nordholt, R.J. Hughes, G.L. Morgan, C.G. Peterson, C.C. Wipf, Present and future free-space quantum key distribution. Proc. SPIE 4635, 116 (2002)ADSGoogle Scholar
  193. 193.
    A. Laing, V. Scarani, J.G. Rarity, J.L. O’Brien, Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)ADSGoogle Scholar
  194. 194.
    R. Ursin, T. Jennewein, J. Kofler, J.M. Perdigues, L. Cacciapuoti, C.J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Fedrizzi, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R.H. Hadfield, R. Laflamme, N. Lutkenhaus, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, A. Zeilinger, Space quest: Experiments with quantum entanglement in space. IAC Proceedings 08, A2.1.3 (2008)Google Scholar
  195. 195.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSGoogle Scholar
  196. 196.
    A. Martin, O. Alibart, M.P. De Micheli, D.B. Ostrowsky, S. Tanzilli, A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012)ADSGoogle Scholar
  197. 197.
    A.S. Clark, J. Fulconis, J.G. Rarity, W.J. Wadsworth, J.L. O’Brien, All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009)ADSGoogle Scholar
  198. 198.
    C. Simon et al., Quantum memories. a review based on the European integrated project Qubit Applications (QAP). Eur. Phys. J. D 58, 1–22 (2010)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alex S. Clark
    • 1
  • Lukas G. Helt
    • 2
  • Matthew J. Collins
    • 1
  • Chunle Xiong
    • 1
  • Kartik Srinivasan
    • 3
  • Benjamin J. Eggleton
    • 1
  • Michael J. Steel
    • 2
  1. 1.Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS)Institute of Photonics and Optical Science (IPOS), School of Physics, University of SydneyCamperdownAustralia
  2. 2.MQ Photonics Research Centre and CUDOS, Department of Physics and AstronomyMacquarie UniversityNorth RydeAustralia
  3. 3.Center for Nanoscale Science and TechnologyNational Institute of Standards and Technology (NIST)GaithersburgUSA

Personalised recommendations