Optical Information Capacity Processing

Part of the Springer Series in Optical Sciences book series (SSOS, volume 194)


The never-stopping increase in demand for information transmission capacity has been met with technological advances in telecommunication systems, such as the implementation of coherent optical systems, advanced multilevel multidimensional modulation formats, fast signal processing, and research into new physical media for signal transmission (e.g. a variety of new types of optical fibers). Since the increase in the signal-to-noise ratio makes fiber communication channels essentially nonlinear (due to the Kerr effect for example), the problem of estimating the Shannon capacity for nonlinear communication channels is not only conceptually interesting, but also practically important. Here we discuss various nonlinear communication channels and review the potential of different optical signal coding, transmission and processing techniques to improve fiber-optic Shannon capacity and to increase the system reach.


Phase Noise Channel Model Channel Capacity Spectral Efficiency Polarization Mode Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to S. Sygletos and K.S. Turitsyn for useful discussions. This work has been supported by the EPSRC project UNLOC (Unlocking the capacity of optical communications) EP/J017582/1.


  1. 1.
    A. Splett, C. Kurtzke, K. Petermann, Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities, in Technical Digest of European Conference on Optical Communication (1993), paper MoC2.4Google Scholar
  2. 2.
    P.P. Mitra, J.B. Stark, Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001)CrossRefADSGoogle Scholar
  3. 3.
    J. Tang, The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission. J. Lightw. Technol. 19(8), 1104–1109 (2001)CrossRefADSGoogle Scholar
  4. 4.
    K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn, Information capacity of optical fiber channels with zero average dispersion. Phys. Rev. Lett. 91, 203901 (2003)CrossRefADSGoogle Scholar
  5. 5.
    B. Wu, E. E. Narimanov, Information Capacity of Nonlinear Fiber-Optical Systems, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME58Google Scholar
  6. 6.
    E.B. Desurvire, Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol. 24, 4697–4710 (2006)CrossRefADSGoogle Scholar
  7. 7.
    R.-J. Essiambre, G. Foschini, G. Kramer, P. Winzer, Capacity limits of information transport in fiber-optic networks. Phys. Rev. Lett. 101, 163901 (2008)CrossRefADSGoogle Scholar
  8. 8.
    R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010)CrossRefADSGoogle Scholar
  9. 9.
    A.D. Ellis, J. Zhao, D. Cotter, Approaching the non-linear Shannon limit. J. Lightwave Technol. 28, 423–433 (2010)CrossRefADSGoogle Scholar
  10. 10.
    X. Chen, W. Shieh, Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems. Opt. Express 18, 19039–19054 (2010)CrossRefADSGoogle Scholar
  11. 11.
    D.J. Richardson, Filling the pipe. Science 330, 327 (2010)CrossRefADSGoogle Scholar
  12. 12.
    R.I. Killey, C. Behrens, Shannon’s theory in nonlinear systems. J. Mod. Optics 58, 1–10 (2011)CrossRefADSzbMATHGoogle Scholar
  13. 13.
    A. Mecozzi, Limits to the long haul coherent transmission set by the Kerr nonlinearity and noise of in-line amplifiers. J. Lightwave Technol. 12, 1993–2000 (1994)Google Scholar
  14. 14.
    A. Mecozzi, R.-J. Essiambre, Nonlinear Shannon limit in pseudo-linear coherent systems. J. Lightwave Technol. 30, 2011–2024 (2012)CrossRefADSGoogle Scholar
  15. 15.
    K.S. Turitsyn, S.K. Turitsyn, Nonlinear communication channels with capacity above the linear Shannon limit. Opt. Lett. 37, 3600–3602 (2012)CrossRefADSGoogle Scholar
  16. 16.
    D.J. Malyon, T. Widdowson, E.G. Bryant, S.F. Carter, J.V. Wright, W.A. Stallard, Electron. Lett. 27(2), 120–121 (1991)CrossRefGoogle Scholar
  17. 17.
    H.J. Thiele, R.I. Killey, P. Bayvel, Influence of fiber dispersion and bit rate on cross-phase-modulation-induced distortion in amplified optical fiber links. Electron. Lett. 34(21), 2050–2051 (1998)CrossRefGoogle Scholar
  18. 18.
    A.D. Ellis, W.A. Stallard, Four wave mixing in ultra long transmission systems incorporating linear amplifiers. IEE Colloquium 159 (1990),
  19. 19.
    D.A. Cleland, A.D. Ellis, C.H.F. Sturrock, Precise modelling of four wave mixing products over 400 km of step-index fibre. Electronics Letrers 28, 1171–1172 (1992)CrossRefGoogle Scholar
  20. 20.
    R.-J. Essiambre, B. Mikkelsen, G. Raybon, Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron. Lett. 35(18), 1576–1578 (1999)CrossRefGoogle Scholar
  21. 21.
    X. Liu, D.A. Fishman, A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion, in OFC (Optical Society of America, 2006), paper OThD4Google Scholar
  22. 22.
    E. Ip, J. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26, 3416–3425 (2008)CrossRefADSGoogle Scholar
  23. 23.
    M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Opt. Express 15, 15777–15810 (2008)CrossRefADSGoogle Scholar
  24. 24.
    X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16(2), 880–888 (2008)CrossRefADSGoogle Scholar
  25. 25.
    D.S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R.I. Killey, P. Bayvel, S.J. Savory, Mitigation of fiber nonlinearity using a digital coherent receiver. IEEE J. Sel. Topics Quantum Electron. 16, 1217–1226 (2010)CrossRefGoogle Scholar
  26. 26.
    E. Ip, Nonlinear compensation using backpropagation for polarization-multiplexed transmission. J. Lightwave Technol. 28(6), 939–951 (2010)CrossRefADSGoogle Scholar
  27. 27.
    L.B.Y. Du, A.J. Lowery, Pilot-based XPM nonlinearity compensator for CO-OFDM systems. Opt. Express 19, B862–B869 (2011)CrossRefGoogle Scholar
  28. 28.
    E.F. Mateo, X. Zhou, G. Li, Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Opt. Express 19, 570–583 (2011)CrossRefADSGoogle Scholar
  29. 29.
    L.B. Du, M.M. Morshed, A.J. Lowery, Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation. Opt. Express 20, 19921–19927 (2012)CrossRefADSGoogle Scholar
  30. 30.
    X. Liu, A.R. Chraplyvy, P.J. Winzer, R.W. Tkach, S. Chandrasekhar, Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photonics 7, 560–568 (2013)CrossRefADSGoogle Scholar
  31. 31.
    H. Cheng, W. Li, Y. Fan, Z. Zhang, S. Yu, Z. Yang, A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Opt. Comm. 290, 152–157 (2013)CrossRefADSGoogle Scholar
  32. 32.
    D. Rafique, A.D. Ellis, Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems. Opt. Express 19, 3449–3454 (2011)CrossRefADSGoogle Scholar
  33. 33.
    S. Shieh, I. Djordjevic, OFDM for Optical Communications (Academic Press, Amsterdam, 2010)Google Scholar
  34. 34.
    W. Shieh, H. Bao, Y. Tang, Coherent optical OFDM: theory and design. Opt. Express 16, 841–859 (2008)CrossRefADSGoogle Scholar
  35. 35.
    A.D. Ellis, J.D. Cox, D. Bird, J. Regnault, J.V. Wright, W.A. Stallard, 5 Gbit/s soliton propagation over 350 km with large periodic dispersion coefficient perturbations using erbium doped fiber amplifier repeaters. Electron. Lett. 27(10), 878 (1991)CrossRefGoogle Scholar
  36. 36.
    I. Morita, K. Tanaka, N. Edagawa, M. Suzuki, Impact of the dispersion map on long-haul 40 Gbith single-channel soliton transmission with periodic dispersion compensation, in Proceedings of OFC99, San Diego, Paper FD1, 1999Google Scholar
  37. 37.
    P.V. Mamyshev, L.F. Mollenauer, Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission. Opt. Lett. 21(6), 396–398 (1996)CrossRefADSGoogle Scholar
  38. 38.
    N.J. Smith, N.J. Doran, Modulational instabilities in fibers with periodic dispersion management. Opt. Lett. 21(8), 570–572 (1996)CrossRefADSGoogle Scholar
  39. 39.
    E. Pincemin, A. Tan, A. Bezard, A. Tonello, S. Wabnitz, J.-D. Ania-Castanon, S. Turitsyn, Robustness of 40 Gb/s ASK modulation formats in the practical system infrastructure. Opt. Express 14(25), 12049–12062 (2006)CrossRefADSGoogle Scholar
  40. 40.
    T. Tanimura, T. Hoshida, S. Oda, T. Tanaka, C. Ohsima, J.C. Rasmussen, Systematic analysis on multi-segment dual-polarisation nonlinear compensation in 112 Gb/s DP-QPSK coherent receiver, in Technical Digest of European Conference on Optical Communication (2009), paper 9.4.5Google Scholar
  41. 41.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)CrossRefMathSciNetGoogle Scholar
  42. 42.
    E. Agrell, M. Karlsson, WDM channel capacity and its dependence on multichannel adaptation models, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OFC/NFOEC (2013)Google Scholar
  43. 43.
    P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri, Analytical modeling of non-linear propagation in uncompensated optical transmission links. IEEE Photon. Technol. Lett. 23, 742–744 (2011)CrossRefADSGoogle Scholar
  44. 44.
    J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber. J. Lightwave Technol. 30, 658–665 (2012)CrossRefADSGoogle Scholar
  45. 45.
    R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E.C. Burrows, R.-J. Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, R. Lingle, Mode-division multiplexing Over 96 km of few-mode fiber using coherent 6 6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2012)CrossRefADSGoogle Scholar
  46. 46.
    A. Mecozzi, C. Antonelli, M. Shtaif, Nonlinear propagation in multi-mode fibers in the strong coupling regime. Opt. Express 20, 11673–11678 (2012) (York, 2002)Google Scholar
  47. 47.
    A. Yariv, D. Fekete, D.M. Pepper, Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4(2), 52–54 (1979)CrossRefADSGoogle Scholar
  48. 48.
    R.A. Fisher, B.R. Suydam, D. Yevick, Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983)CrossRefADSGoogle Scholar
  49. 49.
    I. Phillips, M. Tan, M.F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, Exceeding the nonlinear-shannon limit using raman laser based amplification and optical phase conjugation, in Optical Fiber Communication Conference, M3C. 1Google Scholar
  50. 50.
    J. Kakande, R. Slavik, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, D.J. Richardson, Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nat. Photonics 4(12), 748–752 (2011)CrossRefADSGoogle Scholar
  51. 51.
    M. Matsumoto, Fiber-based all-optical signal regeneration. IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012)CrossRefGoogle Scholar
  52. 52.
    M. Vasilyev, T.I. Lakoba, Opt. Lett. 30, 1458 (2005)CrossRefADSGoogle Scholar
  53. 53.
    R.A. Fisher, B.R. Suydam, D. Yevick, Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983)CrossRefADSGoogle Scholar
  54. 54.
    S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation. IEEE Photon. Technol. Lett. 5, 1241–1243 (1993)CrossRefADSGoogle Scholar
  55. 55.
    X. Chen, X. Liu, S. Chandrasekhar, B. Zhu, and R. W. Tkach, Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation, in Optical Fiber Communication Conference (OFC), paper OTh3C.1 (2012)Google Scholar
  56. 56.
    M.D. Pelusi, B.J. Eggleton, Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation. Opt. Express 20, 8015–8023 (2012)CrossRefADSGoogle Scholar
  57. 57.
    D. Rafique, A.D. Ellis, Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations. Opt. Express 19, 16919–16926 (2011)CrossRefADSGoogle Scholar
  58. 58.
    X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16(2), 880–888 (2008)CrossRefADSGoogle Scholar
  59. 59.
    J.D. Ania-Castañón, T.J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, S.K. Turitsyn, Ultralong Raman fiber lasers as virtually lossless optical media. Phys. Rev. Lett. 96, 023902 (2006)CrossRefADSGoogle Scholar
  60. 60.
    S.K. Turitsyn, J.D. Ania-Castañón, S.A. Babin, V. Karalekas, P. Harper, D. Churkin, S. Kablukov, A. El-Taher, E. Podivilov, V.K. Mezentsev, 270-km ultralong Raman fiber laser. Phys. Rev. Lett. 103, 133901 (2009)CrossRefADSGoogle Scholar
  61. 61.
    E.G. Turitsyna, S.K. Turitsyn, Digital signal processing based on inverse scattering transform. Opt. Lett. 38, 4186–4188 (2013)CrossRefGoogle Scholar
  62. 62.
    J.E. Prilepsky, S.A. Derevyanko, S.K. Turitsyn, Opt. Express 21, 24344 (2013)CrossRefGoogle Scholar
  63. 63.
    S.K. Turitsyn, Capacity-achieving techniques in nonlinear channels, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper Mo4.3.5Google Scholar
  64. 64.
    V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)ADSMathSciNetGoogle Scholar
  65. 65.
    S. Verdu, T.S. Han, A general formula for channel capacity. IEEE Trans. Inf. Theory 4, 1147–1157 (1994)CrossRefMathSciNetGoogle Scholar
  66. 66.
    W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago, Chicago, Illinois (1939)Google Scholar
  67. 67.
    H. W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of 2nd Berkeley Symposium (University of California Press. Berkeley, 1951), pp. 481–492Google Scholar
  68. 68.
    M. Frank, P. Wolfe, An algorithm for quadratic programming. Naval Res. Logistics Q. 3, 95 (1956). doi: 10.1002/nav.3800030109 CrossRefMathSciNetGoogle Scholar
  69. 69.
    S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE T. Inform Theory 18, 14–20 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    R. Blahut, Computation of channel capacity and rate-distortion functions. IEEE T. Inform Theory 18, 460–473 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    G. Matz, P. Duhamel, “Information geometric formulation and interpretation of accelerated Blahut-Arimoto-type algorithms, in Proceedings of the 2004 IEEE Information Theory Workshop, San Antonio, TX, USA, 24–29 Oct 2004Google Scholar
  72. 72.
    N. Varnica, X. Ma, A. Kavcic, Capacity of power constrained memoryless AWGN channels with fixed input constellations, in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Taipei, Taiwan, China, 2002, pp. 1339–1343Google Scholar
  73. 73.
    C.-I. Chang, L.D. Davisson, On calculating the capacity of an infinite-input finite (infinite) -output channel. IEEE Trans. Inf. Theory 34, 1004–1010 (1988)CrossRefMathSciNetGoogle Scholar
  74. 74.
    J. Dauwels, Numerical computation of the capacity of continuous memoryless channels, in Proceedings of the Symposium on Information Theory in the Benelux, Brussels, Belgium, 2005, pp. 221–228Google Scholar
  75. 75.
    D. Arnold, H.-A. Loeliger, On the information rate of binary-input channels with memory, in Proceedings of the 2001 IEEE International Conference on Communications, Helsinki, Finland, 11–14 June 2001, pp. 2692–2695Google Scholar
  76. 76.
    V. Sharma, S.K. Singh, Entropy and channel capacity in the regenerative setup with applications to Markov channels, in Proceedings of the 2001 IEEE International Symposium. Information Theory, Washington, DC, USA, 24–29 June 2001, p. 283Google Scholar
  77. 77.
    H.D. Pfister, J.B. Soriaga, and P.H. Siegel, “On the achievable information rates of finite-state ISI channels, in Proceedings of the 2001 IEEE Globecom, San Antonio, TX, 25–29 Nov 2001, pp. 2992–2996Google Scholar
  78. 78.
    J. Dauwels, H.-A. Loeliger, Computation of information rates by particle methods. IEEE Trans. Inf. Theory 54, 406–409 (2008)CrossRefMathSciNetGoogle Scholar
  79. 79.
    J. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, ISBN 0-534-20934-3, 1995)Google Scholar
  80. 80.
    Certain topics in telegraph transmission theory, AIEE Trans. 47, 617–644 (1928)Google Scholar
  81. 81.
    J.M. Geist, Capacity and cutoff rate for dense M-ary PSK constellations, in Military Communications Conference, vol. 2 (1990) pp. 768–770Google Scholar
  82. 82.
    J.P. Aldis, A.G. Burr, The channel capacity of discrete time phase modulation in AWGN. IEEE Trans. Inf. Theor. 39(1) (1993)Google Scholar
  83. 83.
    K. Ho, J.M. Kahn, Channel capacity of WDM systems using constant-intensity modulation formats, in Optical Fiber Communications Conference, ed by A. Sawchuk, vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThGG85Google Scholar
  84. 84.
    E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinburgh 35, 181–194 (1915)CrossRefGoogle Scholar
  85. 85.
    V.A. Kotelnikov, On the carrying capacity of the ether and wire in telecommunications, in Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow, 1933 (Russian)Google Scholar
  86. 86.
    H. Nyquist, Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3, 324–352 (1924).
  87. 87.
    D. Gabor, Theory of communication. J. Inst. Elec. Eng. 93, 429–457 (1946)Google Scholar
  88. 88.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)Google Scholar
  89. 89.
    S. Verdu, Fifty years of shannon theory. IEEE Trans. Inf. Theor. (Special Commemorative Issue) 44(6), 2057–2078 (1998)Google Scholar
  90. 90.
    G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)CrossRefGoogle Scholar
  91. 91.
    J.P. Gordon, W.H. Louisell, L.R. Walker, Quantum fluctuations and noise in parametric processes II. Phys. Rev. 129, 481–485 (1963)CrossRefADSzbMATHMathSciNetGoogle Scholar
  92. 92.
    J.G. Proakis, Digital Communications (McGraw-Hill, New York, 2001)Google Scholar
  93. 93.
    A. Hasegawa, Y. Kodama, Solitons in Optical Communications (Oxford University Press, Oxford, 1995)zbMATHGoogle Scholar
  94. 94.
    E. Iannone, F. Matera, A. Mecozzi, M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998)Google Scholar
  95. 95.
    S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)ADSMathSciNetGoogle Scholar
  96. 96.
    D. Marcuse, C.R. Menyuk, P.K.A. Wai, Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 15, 1735–1746 (1997)CrossRefADSGoogle Scholar
  97. 97.
    C. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission. J. Eng. Math. 36, 113–136 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    I.V. Kolokolov, K.S. Turitsyn, Effective equation of nonlinear pulse evolution in a randomly anisotropic medium. J. Exp. Theor. Phys. 98(2), 348351 (2004)Google Scholar
  99. 99.
    J.P. Gordon, L.R. Walker, W.H. Louisell, Quantum statistics of masers and attenuators. Phys. Rev. 130, 806–812 (1963)CrossRefADSzbMATHMathSciNetGoogle Scholar
  100. 100.
    V.E. Zakharov, A.B. Shabat, Sov. Phys.-JETP 34, 62 (1972)ADSMathSciNetGoogle Scholar
  101. 101.
    Keang-Po Ho, Exact evaluation of the capacity for intensity-modulated direct-detection channels with optical amplifier noises. IEEE Photonics Technol. Lett. 174, 858–860 (2005)ADSGoogle Scholar
  102. 102.
    M. Katz, S. Shamai (Shitz), On the capacity-achieving distribution of the discrete-time noncoherent and partially coherent AWGN channels. IEEE Trans. Inf. Theor. 50(10), 2257–2270 (2004)Google Scholar
  103. 103.
    A. Lapidoth, Capacity bounds via duality: a phase noise example, in Proceedings of the 2nd Asian-European Workshop on Information Theory, Breisach, Germany, 26–29 June 2002, pp. 58–61Google Scholar
  104. 104.
    B. Goebel, R.-J. Essiambre, G. Kramer, P.J. Winzer, N. Hanik, Calculation of mutual information for partially coherent Gaussian channels with applications to ?ber optics. IEEE Trans. Inf. Theor. 57(9), 5720–5736 (2011)CrossRefMathSciNetGoogle Scholar
  105. 105.
    K. Ho, Phase-modulated Optical Communication Systems (Springer, New York, 2005)Google Scholar
  106. 106.
    P. Leoni, S. Calabro, B. Lankl, Constellation expansion for 100G transmission. IEEE Photon. Technol. Lett. 25, 1904–1907 (2013)CrossRefADSGoogle Scholar
  107. 107.
    E. E. Narimanov, P. Mitra, The channel capacity of a fiber optics communication system: perturbation theory. J. Lightw. Technol. 20, 3 (2002)Google Scholar
  108. 108.
    P. Hou, B. Belzer, T.R. Fischer, Shaping gain of partially coherent additive white Gaussian noise channel, in Proceedings of the Conference Information Sciences and Systems, Princeton, NJ, 15–17 Mar 2000, pp. wp6–17–wp6–22Google Scholar
  109. 109.
    P. Hou, B. Belzer, T.R. Fischer, Shaping gain of the partially coherent additive white Gaussian noise channel. IEEE Commun. Lett. 6, 175–177 (2002)Google Scholar
  110. 110.
    A.P.T. Lau, J.M. Kahn, Signal design and detection in presence of nonlinear phase noise. J. Lightw. Technol. 25(10), 3008–3016 (2007)CrossRefADSGoogle Scholar
  111. 111.
    C. Hager, A. Graell i Amat, A. Alvarado, E. Agrell, “Constellation optimization for coherent optical channels distorted by nonlinear phase noise, in Global Communications Conference (GLOBECOM) (2012), pp. 2870–2875Google Scholar
  112. 112.
    A. Mecozzi, C.B. Clausen, M. Shtaif, S.-G. Park, A.H. Gnauck, Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 13, 445–447 (2001)CrossRefADSGoogle Scholar
  113. 113.
    K. Kikuchi, Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver. Opt. Express 16(2), 889–896 (2008)CrossRefADSGoogle Scholar
  114. 114.
    M.I. Yousefi, F.R. Kschischang, On the per-sample capacity of nondispersive optical fibers. IEEE Trans. Inf. Theor. 57(11), 7522–7541Google Scholar
  115. 115.
    J.B. Stark, P. Mitra, A. Sengupta, Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt. Fiber Technol. 7, 275–288 (2001)CrossRefADSGoogle Scholar
  116. 116.
    X. Liu, X. Wei, R.E. Slusher, C.J. McKinstrie, Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation. Opt. Lett. 27, 1616–1618 (2002)CrossRefADSGoogle Scholar
  117. 117.
    M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, 10 Gbit/s soliton data transmission over one million kilometres. Electron. Lett. 27(14), 1270–1272 (1991)CrossRefGoogle Scholar
  118. 118.
    L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, I. Kang, C. Doerr, Demonstration of 109 X 10G dense WDM over more than 18,000 km using novel, periodic-group-delay complemented dispersion compensation and dispersion managed solitons, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.4, 2003Google Scholar
  119. 119.
    E. Agrell, A. Alvarado, G. Durisi, M. Karlsson, Capacity of a nonlinear optical channel with finite memory. J. Lightwave Technol. 16, 2862–2876 (2014)CrossRefADSGoogle Scholar
  120. 120.
    R. Dar, M. Shtaif, M. Feder, New bounds on the capacity of the nonlinear fiber-optic channel. Opt. Lett. 39, 398–401 (2014)CrossRefADSGoogle Scholar
  121. 121.
    M. Shtaif, R. Dar, A. Mecozzi, M. Feder, Nonlinear interference noise in WDM systems and approaches for its cancelation, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper We1.3.1Google Scholar
  122. 122.
    K.S. Turitsyn, S.K. Turitsyn, Nonlinear communication channels with capacity above the linear Shannon limit. Opt. Lett. 37(17), 3600–3602 (2012)CrossRefADSGoogle Scholar
  123. 123.
    R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise Erbium-doped fibre amplifier at 1.54 μm. Electron. Lett. 23, 1026–1102 (1987)CrossRefGoogle Scholar
  124. 124.
    R.H. Stolen, E.P. Ippen, Raman gain in glass optical waveguides. Appl. Phys. Lett. 22, 276 (1973)CrossRefADSGoogle Scholar
  125. 125.
    M.A. Sorokina, S.K. Turitsyn, Regeneration limit of classical Shannon capacity. Nat. Commun. 5, Article number: 3861 (2014)Google Scholar
  126. 126.
    M.A. Sorokina, S. Sygletos, S.K. Turitsyn, Optimization of cascaded regenerative links based on phase sensitive amplifiers. Opt. Lett. 38, 4378–4381 (2013)CrossRefADSGoogle Scholar
  127. 127.
    S. Watanabe, M. Shirasaki, Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation. J. Lightwave Technol. 14(3), 243–248 (1996)CrossRefADSGoogle Scholar
  128. 128.
    I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M.H. Chou, M.M. Fejer, E.E. Chaban, R. Harel, D.L. Philen, S. Kosinski, Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbo3 phase conjugator and Raman amplification, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper PD33Google Scholar
  129. 129.
    D. Rafique, A.D. Ellis, Nonlinearity compensation via spectral inversion and digital back-propagation: a practical approach, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3A.1Google Scholar
  130. 130.
    S.L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P.M. Krummrich, W. Sohler, G.-D. Khoe, H. de Waardt, Optical phase conjugation for ultra long-haul phase-shift-keyed transmission. J. Lightwave Technol. 24, 54 (2006)CrossRefADSGoogle Scholar
  131. 131.
    Yue Tian, Yue-Kai Huang, Shaoliang Zhang, Paul R. Prucnal, Ting Wang, Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy. Opt. Express 21, 5099–5106 (2013)CrossRefADSGoogle Scholar
  132. 132.
    B. Corcoran, S. Olsson, C. Lundström, Mitigation of Nonlinear Impairments on QPSK Data in Phase-Sensitive Amplified Links, in 39th European Conference on Optical Communication and Exhibition, ECOC 2013, London, 22–26 Sept 2013Google Scholar
  133. 133.
    X. Liu, S. Chandrasekhar, P.J. Winzer, A.R. Chraplyvy, R.W. Tkach, B. Zhu, T.F. Taunay, M. Fishteyn, D.J. DiGiovanni, Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime. Opt. Express 20, 19088–19095 (2012)CrossRefADSGoogle Scholar
  134. 134.
    T. Yoshida, T. Sugihara, K. Ishida, T. Mizuochi, Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3C.6Google Scholar
  135. 135.
    S.T. Le, E. Giacoumidis, N. Doran, A.D. Ellis, S.K. Turitsyn, Phase-conjugated subcarrier coding for fibre nonlinearity mitigation in CO-OFDM transmission, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper M3C.6Google Scholar
  136. 136.
    T. Widdowson, J.P. Hueting, A.D. Ellis, D.J. Malyon, P.J. Watkinson, Global fibre transmission using optically amplified regenerators for maximised repeater spacing. Electron. Lett. 30, 2056–2057 (1994)CrossRefGoogle Scholar
  137. 137.
    O. Leclerc, U.E. Desurvire, O. Audouin, Synchronous WDM soliton regeneration: toward 80–160 Gbit/s transoceanic systems. Opt. Fiber Technol. 3(2), 97–116 (1997)CrossRefADSGoogle Scholar
  138. 138.
    A.D. Ellis, J. Zhao, Channel capacity of non-linear transmission systems, in Impact of Nonlinearities on Fiber Optic Communications, ed. by S. Kumar. (New York, Springer, 2011), ch. 13, pp. 507–538Google Scholar
  139. 139.
    S. Sygletos, P. Frascella, S.K. Ibrahim, L. Gruner-Nielsen, R. Phelan, J. O”Gorman, A.D. Ellis, A practical phase sensitive amplification scheme for two channel phase regeneration. Opt. Express 19(26), B938–B945 (2011)Google Scholar
  140. 140.
    R.P. Webb, J.M. Dailey, R.J. Manning, A.D. Ellis, Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA. Opt. Express 19, 20015–20022 (2011)CrossRefADSGoogle Scholar
  141. 141.
    S. Watanabe, S. Kaneko, T. Chikama, Long-haul fiber transmission using optical phase conjugation. Opt. Fiber Technol. 2(2), 169178 (1996)Google Scholar
  142. 142.
    G. Goldfarb, M.G. Taylor, G. Li, Experimental demonstration of fiber impairment compensation using the split-step infinite impulse response method. Digest of the IEEE/LEOS Summer Topical Meetings 2008, 145–146 (2008)Google Scholar
  143. 143.
    D. Rafique, J. Zhao, A.D. Ellis, Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission. Opt. Express 19, 5219–5224 (2011)CrossRefADSGoogle Scholar
  144. 144.
    R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. Andrekson, R. Weerasuriya, S. Sygletos, A.D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. Richardson, All-optical phase and amplitude regenerator for next generation telecommunications systems. Nat. Photonics 4(10), 690–695 (2010)CrossRefADSGoogle Scholar
  145. 145.
    G. Hesketh, P. Horak, Reducing bit-error rate with optical phase regeneration in multilevel modulation formats. Opt. Lett. 38, 5357–5360 (2013)CrossRefADSGoogle Scholar
  146. 146.
    A. Bogris, D. Syvridis, All-optical signal processing for 16-QAM using four-level optical phase quantizers based on phase sensitive amplifiers, in Proceedings of European Conference in Optical Communications (ECOC 2013), London, paper We.3A.6, (2013)Google Scholar
  147. 147.
    T. Umeki, M. Asobe, H. Takara, Y. Miyamoto, H. Takenouchi, Multi-span transmission using phase and amplitude regeneration in PPLN-based PSA. Opt. Express 21, 18170–18177 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Aston Institute of Photonic Technologies, School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations