Skip to main content

Optical Information Capacity Processing

Part of the Springer Series in Optical Sciences book series (SSOS,volume 194)

Abstract

The never-stopping increase in demand for information transmission capacity has been met with technological advances in telecommunication systems, such as the implementation of coherent optical systems, advanced multilevel multidimensional modulation formats, fast signal processing, and research into new physical media for signal transmission (e.g. a variety of new types of optical fibers). Since the increase in the signal-to-noise ratio makes fiber communication channels essentially nonlinear (due to the Kerr effect for example), the problem of estimating the Shannon capacity for nonlinear communication channels is not only conceptually interesting, but also practically important. Here we discuss various nonlinear communication channels and review the potential of different optical signal coding, transmission and processing techniques to improve fiber-optic Shannon capacity and to increase the system reach.

Keywords

  • Phase Noise
  • Channel Model
  • Channel Capacity
  • Spectral Efficiency
  • Polarization Mode Dispersion

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14992-9_11
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14992-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1

References

  1. A. Splett, C. Kurtzke, K. Petermann, Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities, in Technical Digest of European Conference on Optical Communication (1993), paper MoC2.4

    Google Scholar 

  2. P.P. Mitra, J.B. Stark, Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001)

    CrossRef  ADS  Google Scholar 

  3. J. Tang, The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission. J. Lightw. Technol. 19(8), 1104–1109 (2001)

    CrossRef  ADS  Google Scholar 

  4. K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn, Information capacity of optical fiber channels with zero average dispersion. Phys. Rev. Lett. 91, 203901 (2003)

    CrossRef  ADS  Google Scholar 

  5. B. Wu, E. E. Narimanov, Information Capacity of Nonlinear Fiber-Optical Systems, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME58

    Google Scholar 

  6. E.B. Desurvire, Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol. 24, 4697–4710 (2006)

    CrossRef  ADS  Google Scholar 

  7. R.-J. Essiambre, G. Foschini, G. Kramer, P. Winzer, Capacity limits of information transport in fiber-optic networks. Phys. Rev. Lett. 101, 163901 (2008)

    CrossRef  ADS  Google Scholar 

  8. R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010)

    CrossRef  ADS  Google Scholar 

  9. A.D. Ellis, J. Zhao, D. Cotter, Approaching the non-linear Shannon limit. J. Lightwave Technol. 28, 423–433 (2010)

    CrossRef  ADS  Google Scholar 

  10. X. Chen, W. Shieh, Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems. Opt. Express 18, 19039–19054 (2010)

    CrossRef  ADS  Google Scholar 

  11. D.J. Richardson, Filling the pipe. Science 330, 327 (2010)

    CrossRef  ADS  Google Scholar 

  12. R.I. Killey, C. Behrens, Shannon’s theory in nonlinear systems. J. Mod. Optics 58, 1–10 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  13. A. Mecozzi, Limits to the long haul coherent transmission set by the Kerr nonlinearity and noise of in-line amplifiers. J. Lightwave Technol. 12, 1993–2000 (1994)

    Google Scholar 

  14. A. Mecozzi, R.-J. Essiambre, Nonlinear Shannon limit in pseudo-linear coherent systems. J. Lightwave Technol. 30, 2011–2024 (2012)

    CrossRef  ADS  Google Scholar 

  15. K.S. Turitsyn, S.K. Turitsyn, Nonlinear communication channels with capacity above the linear Shannon limit. Opt. Lett. 37, 3600–3602 (2012)

    CrossRef  ADS  Google Scholar 

  16. D.J. Malyon, T. Widdowson, E.G. Bryant, S.F. Carter, J.V. Wright, W.A. Stallard, Electron. Lett. 27(2), 120–121 (1991)

    CrossRef  Google Scholar 

  17. H.J. Thiele, R.I. Killey, P. Bayvel, Influence of fiber dispersion and bit rate on cross-phase-modulation-induced distortion in amplified optical fiber links. Electron. Lett. 34(21), 2050–2051 (1998)

    CrossRef  Google Scholar 

  18. A.D. Ellis, W.A. Stallard, Four wave mixing in ultra long transmission systems incorporating linear amplifiers. IEE Colloquium 159 (1990), http://ieeexplore.ieee.org/xpl/freeabsall.jsp?arnumber=190875

  19. D.A. Cleland, A.D. Ellis, C.H.F. Sturrock, Precise modelling of four wave mixing products over 400 km of step-index fibre. Electronics Letrers 28, 1171–1172 (1992)

    CrossRef  Google Scholar 

  20. R.-J. Essiambre, B. Mikkelsen, G. Raybon, Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron. Lett. 35(18), 1576–1578 (1999)

    CrossRef  Google Scholar 

  21. X. Liu, D.A. Fishman, A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion, in OFC (Optical Society of America, 2006), paper OThD4

    Google Scholar 

  22. E. Ip, J. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26, 3416–3425 (2008)

    CrossRef  ADS  Google Scholar 

  23. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Opt. Express 15, 15777–15810 (2008)

    CrossRef  ADS  Google Scholar 

  24. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16(2), 880–888 (2008)

    CrossRef  ADS  Google Scholar 

  25. D.S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R.I. Killey, P. Bayvel, S.J. Savory, Mitigation of fiber nonlinearity using a digital coherent receiver. IEEE J. Sel. Topics Quantum Electron. 16, 1217–1226 (2010)

    CrossRef  Google Scholar 

  26. E. Ip, Nonlinear compensation using backpropagation for polarization-multiplexed transmission. J. Lightwave Technol. 28(6), 939–951 (2010)

    CrossRef  ADS  Google Scholar 

  27. L.B.Y. Du, A.J. Lowery, Pilot-based XPM nonlinearity compensator for CO-OFDM systems. Opt. Express 19, B862–B869 (2011)

    CrossRef  Google Scholar 

  28. E.F. Mateo, X. Zhou, G. Li, Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Opt. Express 19, 570–583 (2011)

    CrossRef  ADS  Google Scholar 

  29. L.B. Du, M.M. Morshed, A.J. Lowery, Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation. Opt. Express 20, 19921–19927 (2012)

    CrossRef  ADS  Google Scholar 

  30. X. Liu, A.R. Chraplyvy, P.J. Winzer, R.W. Tkach, S. Chandrasekhar, Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photonics 7, 560–568 (2013)

    CrossRef  ADS  Google Scholar 

  31. H. Cheng, W. Li, Y. Fan, Z. Zhang, S. Yu, Z. Yang, A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Opt. Comm. 290, 152–157 (2013)

    CrossRef  ADS  Google Scholar 

  32. D. Rafique, A.D. Ellis, Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems. Opt. Express 19, 3449–3454 (2011)

    CrossRef  ADS  Google Scholar 

  33. S. Shieh, I. Djordjevic, OFDM for Optical Communications (Academic Press, Amsterdam, 2010)

    Google Scholar 

  34. W. Shieh, H. Bao, Y. Tang, Coherent optical OFDM: theory and design. Opt. Express 16, 841–859 (2008)

    CrossRef  ADS  Google Scholar 

  35. A.D. Ellis, J.D. Cox, D. Bird, J. Regnault, J.V. Wright, W.A. Stallard, 5 Gbit/s soliton propagation over 350 km with large periodic dispersion coefficient perturbations using erbium doped fiber amplifier repeaters. Electron. Lett. 27(10), 878 (1991)

    CrossRef  Google Scholar 

  36. I. Morita, K. Tanaka, N. Edagawa, M. Suzuki, Impact of the dispersion map on long-haul 40 Gbith single-channel soliton transmission with periodic dispersion compensation, in Proceedings of OFC99, San Diego, Paper FD1, 1999

    Google Scholar 

  37. P.V. Mamyshev, L.F. Mollenauer, Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission. Opt. Lett. 21(6), 396–398 (1996)

    CrossRef  ADS  Google Scholar 

  38. N.J. Smith, N.J. Doran, Modulational instabilities in fibers with periodic dispersion management. Opt. Lett. 21(8), 570–572 (1996)

    CrossRef  ADS  Google Scholar 

  39. E. Pincemin, A. Tan, A. Bezard, A. Tonello, S. Wabnitz, J.-D. Ania-Castanon, S. Turitsyn, Robustness of 40 Gb/s ASK modulation formats in the practical system infrastructure. Opt. Express 14(25), 12049–12062 (2006)

    CrossRef  ADS  Google Scholar 

  40. T. Tanimura, T. Hoshida, S. Oda, T. Tanaka, C. Ohsima, J.C. Rasmussen, Systematic analysis on multi-segment dual-polarisation nonlinear compensation in 112 Gb/s DP-QPSK coherent receiver, in Technical Digest of European Conference on Optical Communication (2009), paper 9.4.5

    Google Scholar 

  41. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    CrossRef  MathSciNet  Google Scholar 

  42. E. Agrell, M. Karlsson, WDM channel capacity and its dependence on multichannel adaptation models, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OFC/NFOEC (2013)

    Google Scholar 

  43. P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri, Analytical modeling of non-linear propagation in uncompensated optical transmission links. IEEE Photon. Technol. Lett. 23, 742–744 (2011)

    CrossRef  ADS  Google Scholar 

  44. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber. J. Lightwave Technol. 30, 658–665 (2012)

    CrossRef  ADS  Google Scholar 

  45. R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E.C. Burrows, R.-J. Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, R. Lingle, Mode-division multiplexing Over 96 km of few-mode fiber using coherent 6 6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2012)

    CrossRef  ADS  Google Scholar 

  46. A. Mecozzi, C. Antonelli, M. Shtaif, Nonlinear propagation in multi-mode fibers in the strong coupling regime. Opt. Express 20, 11673–11678 (2012) (York, 2002)

    Google Scholar 

  47. A. Yariv, D. Fekete, D.M. Pepper, Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4(2), 52–54 (1979)

    CrossRef  ADS  Google Scholar 

  48. R.A. Fisher, B.R. Suydam, D. Yevick, Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983)

    CrossRef  ADS  Google Scholar 

  49. I. Phillips, M. Tan, M.F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, Exceeding the nonlinear-shannon limit using raman laser based amplification and optical phase conjugation, in Optical Fiber Communication Conference, M3C. 1

    Google Scholar 

  50. J. Kakande, R. Slavik, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, D.J. Richardson, Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nat. Photonics 4(12), 748–752 (2011)

    CrossRef  ADS  Google Scholar 

  51. M. Matsumoto, Fiber-based all-optical signal regeneration. IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012)

    CrossRef  Google Scholar 

  52. M. Vasilyev, T.I. Lakoba, Opt. Lett. 30, 1458 (2005)

    CrossRef  ADS  Google Scholar 

  53. R.A. Fisher, B.R. Suydam, D. Yevick, Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983)

    CrossRef  ADS  Google Scholar 

  54. S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation. IEEE Photon. Technol. Lett. 5, 1241–1243 (1993)

    CrossRef  ADS  Google Scholar 

  55. X. Chen, X. Liu, S. Chandrasekhar, B. Zhu, and R. W. Tkach, Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation, in Optical Fiber Communication Conference (OFC), paper OTh3C.1 (2012)

    Google Scholar 

  56. M.D. Pelusi, B.J. Eggleton, Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation. Opt. Express 20, 8015–8023 (2012)

    CrossRef  ADS  Google Scholar 

  57. D. Rafique, A.D. Ellis, Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations. Opt. Express 19, 16919–16926 (2011)

    CrossRef  ADS  Google Scholar 

  58. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16(2), 880–888 (2008)

    CrossRef  ADS  Google Scholar 

  59. J.D. Ania-Castañón, T.J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, S.K. Turitsyn, Ultralong Raman fiber lasers as virtually lossless optical media. Phys. Rev. Lett. 96, 023902 (2006)

    CrossRef  ADS  Google Scholar 

  60. S.K. Turitsyn, J.D. Ania-Castañón, S.A. Babin, V. Karalekas, P. Harper, D. Churkin, S. Kablukov, A. El-Taher, E. Podivilov, V.K. Mezentsev, 270-km ultralong Raman fiber laser. Phys. Rev. Lett. 103, 133901 (2009)

    CrossRef  ADS  Google Scholar 

  61. E.G. Turitsyna, S.K. Turitsyn, Digital signal processing based on inverse scattering transform. Opt. Lett. 38, 4186–4188 (2013)

    CrossRef  Google Scholar 

  62. J.E. Prilepsky, S.A. Derevyanko, S.K. Turitsyn, Opt. Express 21, 24344 (2013)

    CrossRef  Google Scholar 

  63. S.K. Turitsyn, Capacity-achieving techniques in nonlinear channels, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper Mo4.3.5

    Google Scholar 

  64. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  MathSciNet  Google Scholar 

  65. S. Verdu, T.S. Han, A general formula for channel capacity. IEEE Trans. Inf. Theory 4, 1147–1157 (1994)

    CrossRef  MathSciNet  Google Scholar 

  66. W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago, Chicago, Illinois (1939)

    Google Scholar 

  67. H. W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of 2nd Berkeley Symposium (University of California Press. Berkeley, 1951), pp. 481–492

    Google Scholar 

  68. M. Frank, P. Wolfe, An algorithm for quadratic programming. Naval Res. Logistics Q. 3, 95 (1956). doi:10.1002/nav.3800030109

    CrossRef  MathSciNet  Google Scholar 

  69. S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE T. Inform Theory 18, 14–20 (1972)

    CrossRef  MATH  MathSciNet  Google Scholar 

  70. R. Blahut, Computation of channel capacity and rate-distortion functions. IEEE T. Inform Theory 18, 460–473 (1972)

    CrossRef  MATH  MathSciNet  Google Scholar 

  71. G. Matz, P. Duhamel, “Information geometric formulation and interpretation of accelerated Blahut-Arimoto-type algorithms, in Proceedings of the 2004 IEEE Information Theory Workshop, San Antonio, TX, USA, 24–29 Oct 2004

    Google Scholar 

  72. N. Varnica, X. Ma, A. Kavcic, Capacity of power constrained memoryless AWGN channels with fixed input constellations, in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Taipei, Taiwan, China, 2002, pp. 1339–1343

    Google Scholar 

  73. C.-I. Chang, L.D. Davisson, On calculating the capacity of an infinite-input finite (infinite) -output channel. IEEE Trans. Inf. Theory 34, 1004–1010 (1988)

    CrossRef  MathSciNet  Google Scholar 

  74. J. Dauwels, Numerical computation of the capacity of continuous memoryless channels, in Proceedings of the Symposium on Information Theory in the Benelux, Brussels, Belgium, 2005, pp. 221–228

    Google Scholar 

  75. D. Arnold, H.-A. Loeliger, On the information rate of binary-input channels with memory, in Proceedings of the 2001 IEEE International Conference on Communications, Helsinki, Finland, 11–14 June 2001, pp. 2692–2695

    Google Scholar 

  76. V. Sharma, S.K. Singh, Entropy and channel capacity in the regenerative setup with applications to Markov channels, in Proceedings of the 2001 IEEE International Symposium. Information Theory, Washington, DC, USA, 24–29 June 2001, p. 283

    Google Scholar 

  77. H.D. Pfister, J.B. Soriaga, and P.H. Siegel, “On the achievable information rates of finite-state ISI channels, in Proceedings of the 2001 IEEE Globecom, San Antonio, TX, 25–29 Nov 2001, pp. 2992–2996

    Google Scholar 

  78. J. Dauwels, H.-A. Loeliger, Computation of information rates by particle methods. IEEE Trans. Inf. Theory 54, 406–409 (2008)

    CrossRef  MathSciNet  Google Scholar 

  79. J. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, ISBN 0-534-20934-3, 1995)

    Google Scholar 

  80. Certain topics in telegraph transmission theory, AIEE Trans. 47, 617–644 (1928)

    Google Scholar 

  81. J.M. Geist, Capacity and cutoff rate for dense M-ary PSK constellations, in Military Communications Conference, vol. 2 (1990) pp. 768–770

    Google Scholar 

  82. J.P. Aldis, A.G. Burr, The channel capacity of discrete time phase modulation in AWGN. IEEE Trans. Inf. Theor. 39(1) (1993)

    Google Scholar 

  83. K. Ho, J.M. Kahn, Channel capacity of WDM systems using constant-intensity modulation formats, in Optical Fiber Communications Conference, ed by A. Sawchuk, vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThGG85

    Google Scholar 

  84. E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinburgh 35, 181–194 (1915)

    CrossRef  Google Scholar 

  85. V.A. Kotelnikov, On the carrying capacity of the ether and wire in telecommunications, in Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow, 1933 (Russian)

    Google Scholar 

  86. H. Nyquist, Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3, 324–352 (1924). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=989875

  87. D. Gabor, Theory of communication. J. Inst. Elec. Eng. 93, 429–457 (1946)

    Google Scholar 

  88. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Google Scholar 

  89. S. Verdu, Fifty years of shannon theory. IEEE Trans. Inf. Theor. (Special Commemorative Issue) 44(6), 2057–2078 (1998)

    Google Scholar 

  90. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    CrossRef  Google Scholar 

  91. J.P. Gordon, W.H. Louisell, L.R. Walker, Quantum fluctuations and noise in parametric processes II. Phys. Rev. 129, 481–485 (1963)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  92. J.G. Proakis, Digital Communications (McGraw-Hill, New York, 2001)

    Google Scholar 

  93. A. Hasegawa, Y. Kodama, Solitons in Optical Communications (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  94. E. Iannone, F. Matera, A. Mecozzi, M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998)

    Google Scholar 

  95. S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)

    ADS  MathSciNet  Google Scholar 

  96. D. Marcuse, C.R. Menyuk, P.K.A. Wai, Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 15, 1735–1746 (1997)

    CrossRef  ADS  Google Scholar 

  97. C. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission. J. Eng. Math. 36, 113–136 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  98. I.V. Kolokolov, K.S. Turitsyn, Effective equation of nonlinear pulse evolution in a randomly anisotropic medium. J. Exp. Theor. Phys. 98(2), 348351 (2004)

    Google Scholar 

  99. J.P. Gordon, L.R. Walker, W.H. Louisell, Quantum statistics of masers and attenuators. Phys. Rev. 130, 806–812 (1963)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  100. V.E. Zakharov, A.B. Shabat, Sov. Phys.-JETP 34, 62 (1972)

    ADS  MathSciNet  Google Scholar 

  101. Keang-Po Ho, Exact evaluation of the capacity for intensity-modulated direct-detection channels with optical amplifier noises. IEEE Photonics Technol. Lett. 174, 858–860 (2005)

    ADS  Google Scholar 

  102. M. Katz, S. Shamai (Shitz), On the capacity-achieving distribution of the discrete-time noncoherent and partially coherent AWGN channels. IEEE Trans. Inf. Theor. 50(10), 2257–2270 (2004)

    Google Scholar 

  103. A. Lapidoth, Capacity bounds via duality: a phase noise example, in Proceedings of the 2nd Asian-European Workshop on Information Theory, Breisach, Germany, 26–29 June 2002, pp. 58–61

    Google Scholar 

  104. B. Goebel, R.-J. Essiambre, G. Kramer, P.J. Winzer, N. Hanik, Calculation of mutual information for partially coherent Gaussian channels with applications to ?ber optics. IEEE Trans. Inf. Theor. 57(9), 5720–5736 (2011)

    CrossRef  MathSciNet  Google Scholar 

  105. K. Ho, Phase-modulated Optical Communication Systems (Springer, New York, 2005)

    Google Scholar 

  106. P. Leoni, S. Calabro, B. Lankl, Constellation expansion for 100G transmission. IEEE Photon. Technol. Lett. 25, 1904–1907 (2013)

    CrossRef  ADS  Google Scholar 

  107. E. E. Narimanov, P. Mitra, The channel capacity of a fiber optics communication system: perturbation theory. J. Lightw. Technol. 20, 3 (2002)

    Google Scholar 

  108. P. Hou, B. Belzer, T.R. Fischer, Shaping gain of partially coherent additive white Gaussian noise channel, in Proceedings of the Conference Information Sciences and Systems, Princeton, NJ, 15–17 Mar 2000, pp. wp6–17–wp6–22

    Google Scholar 

  109. P. Hou, B. Belzer, T.R. Fischer, Shaping gain of the partially coherent additive white Gaussian noise channel. IEEE Commun. Lett. 6, 175–177 (2002)

    Google Scholar 

  110. A.P.T. Lau, J.M. Kahn, Signal design and detection in presence of nonlinear phase noise. J. Lightw. Technol. 25(10), 3008–3016 (2007)

    CrossRef  ADS  Google Scholar 

  111. C. Hager, A. Graell i Amat, A. Alvarado, E. Agrell, “Constellation optimization for coherent optical channels distorted by nonlinear phase noise, in Global Communications Conference (GLOBECOM) (2012), pp. 2870–2875

    Google Scholar 

  112. A. Mecozzi, C.B. Clausen, M. Shtaif, S.-G. Park, A.H. Gnauck, Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 13, 445–447 (2001)

    CrossRef  ADS  Google Scholar 

  113. K. Kikuchi, Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver. Opt. Express 16(2), 889–896 (2008)

    CrossRef  ADS  Google Scholar 

  114. M.I. Yousefi, F.R. Kschischang, On the per-sample capacity of nondispersive optical fibers. IEEE Trans. Inf. Theor. 57(11), 7522–7541

    Google Scholar 

  115. J.B. Stark, P. Mitra, A. Sengupta, Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt. Fiber Technol. 7, 275–288 (2001)

    CrossRef  ADS  Google Scholar 

  116. X. Liu, X. Wei, R.E. Slusher, C.J. McKinstrie, Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation. Opt. Lett. 27, 1616–1618 (2002)

    CrossRef  ADS  Google Scholar 

  117. M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, 10 Gbit/s soliton data transmission over one million kilometres. Electron. Lett. 27(14), 1270–1272 (1991)

    CrossRef  Google Scholar 

  118. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, I. Kang, C. Doerr, Demonstration of 109 X 10G dense WDM over more than 18,000 km using novel, periodic-group-delay complemented dispersion compensation and dispersion managed solitons, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.4, 2003

    Google Scholar 

  119. E. Agrell, A. Alvarado, G. Durisi, M. Karlsson, Capacity of a nonlinear optical channel with finite memory. J. Lightwave Technol. 16, 2862–2876 (2014)

    CrossRef  ADS  Google Scholar 

  120. R. Dar, M. Shtaif, M. Feder, New bounds on the capacity of the nonlinear fiber-optic channel. Opt. Lett. 39, 398–401 (2014)

    CrossRef  ADS  Google Scholar 

  121. M. Shtaif, R. Dar, A. Mecozzi, M. Feder, Nonlinear interference noise in WDM systems and approaches for its cancelation, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper We1.3.1

    Google Scholar 

  122. K.S. Turitsyn, S.K. Turitsyn, Nonlinear communication channels with capacity above the linear Shannon limit. Opt. Lett. 37(17), 3600–3602 (2012)

    CrossRef  ADS  Google Scholar 

  123. R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise Erbium-doped fibre amplifier at 1.54 μm. Electron. Lett. 23, 1026–1102 (1987)

    CrossRef  Google Scholar 

  124. R.H. Stolen, E.P. Ippen, Raman gain in glass optical waveguides. Appl. Phys. Lett. 22, 276 (1973)

    CrossRef  ADS  Google Scholar 

  125. M.A. Sorokina, S.K. Turitsyn, Regeneration limit of classical Shannon capacity. Nat. Commun. 5, Article number: 3861 (2014)

    Google Scholar 

  126. M.A. Sorokina, S. Sygletos, S.K. Turitsyn, Optimization of cascaded regenerative links based on phase sensitive amplifiers. Opt. Lett. 38, 4378–4381 (2013)

    CrossRef  ADS  Google Scholar 

  127. S. Watanabe, M. Shirasaki, Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation. J. Lightwave Technol. 14(3), 243–248 (1996)

    CrossRef  ADS  Google Scholar 

  128. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M.H. Chou, M.M. Fejer, E.E. Chaban, R. Harel, D.L. Philen, S. Kosinski, Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbo3 phase conjugator and Raman amplification, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper PD33

    Google Scholar 

  129. D. Rafique, A.D. Ellis, Nonlinearity compensation via spectral inversion and digital back-propagation: a practical approach, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3A.1

    Google Scholar 

  130. S.L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P.M. Krummrich, W. Sohler, G.-D. Khoe, H. de Waardt, Optical phase conjugation for ultra long-haul phase-shift-keyed transmission. J. Lightwave Technol. 24, 54 (2006)

    CrossRef  ADS  Google Scholar 

  131. Yue Tian, Yue-Kai Huang, Shaoliang Zhang, Paul R. Prucnal, Ting Wang, Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy. Opt. Express 21, 5099–5106 (2013)

    CrossRef  ADS  Google Scholar 

  132. B. Corcoran, S. Olsson, C. Lundström, Mitigation of Nonlinear Impairments on QPSK Data in Phase-Sensitive Amplified Links, in 39th European Conference on Optical Communication and Exhibition, ECOC 2013, London, 22–26 Sept 2013

    Google Scholar 

  133. X. Liu, S. Chandrasekhar, P.J. Winzer, A.R. Chraplyvy, R.W. Tkach, B. Zhu, T.F. Taunay, M. Fishteyn, D.J. DiGiovanni, Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime. Opt. Express 20, 19088–19095 (2012)

    CrossRef  ADS  Google Scholar 

  134. T. Yoshida, T. Sugihara, K. Ishida, T. Mizuochi, Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3C.6

    Google Scholar 

  135. S.T. Le, E. Giacoumidis, N. Doran, A.D. Ellis, S.K. Turitsyn, Phase-conjugated subcarrier coding for fibre nonlinearity mitigation in CO-OFDM transmission, in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, paper M3C.6

    Google Scholar 

  136. T. Widdowson, J.P. Hueting, A.D. Ellis, D.J. Malyon, P.J. Watkinson, Global fibre transmission using optically amplified regenerators for maximised repeater spacing. Electron. Lett. 30, 2056–2057 (1994)

    CrossRef  Google Scholar 

  137. O. Leclerc, U.E. Desurvire, O. Audouin, Synchronous WDM soliton regeneration: toward 80–160 Gbit/s transoceanic systems. Opt. Fiber Technol. 3(2), 97–116 (1997)

    CrossRef  ADS  Google Scholar 

  138. A.D. Ellis, J. Zhao, Channel capacity of non-linear transmission systems, in Impact of Nonlinearities on Fiber Optic Communications, ed. by S. Kumar. (New York, Springer, 2011), ch. 13, pp. 507–538

    Google Scholar 

  139. S. Sygletos, P. Frascella, S.K. Ibrahim, L. Gruner-Nielsen, R. Phelan, J. O”Gorman, A.D. Ellis, A practical phase sensitive amplification scheme for two channel phase regeneration. Opt. Express 19(26), B938–B945 (2011)

    Google Scholar 

  140. R.P. Webb, J.M. Dailey, R.J. Manning, A.D. Ellis, Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA. Opt. Express 19, 20015–20022 (2011)

    CrossRef  ADS  Google Scholar 

  141. S. Watanabe, S. Kaneko, T. Chikama, Long-haul fiber transmission using optical phase conjugation. Opt. Fiber Technol. 2(2), 169178 (1996)

    Google Scholar 

  142. G. Goldfarb, M.G. Taylor, G. Li, Experimental demonstration of fiber impairment compensation using the split-step infinite impulse response method. Digest of the IEEE/LEOS Summer Topical Meetings 2008, 145–146 (2008)

    Google Scholar 

  143. D. Rafique, J. Zhao, A.D. Ellis, Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission. Opt. Express 19, 5219–5224 (2011)

    CrossRef  ADS  Google Scholar 

  144. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. Andrekson, R. Weerasuriya, S. Sygletos, A.D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. Richardson, All-optical phase and amplitude regenerator for next generation telecommunications systems. Nat. Photonics 4(10), 690–695 (2010)

    CrossRef  ADS  Google Scholar 

  145. G. Hesketh, P. Horak, Reducing bit-error rate with optical phase regeneration in multilevel modulation formats. Opt. Lett. 38, 5357–5360 (2013)

    CrossRef  ADS  Google Scholar 

  146. A. Bogris, D. Syvridis, All-optical signal processing for 16-QAM using four-level optical phase quantizers based on phase sensitive amplifiers, in Proceedings of European Conference in Optical Communications (ECOC 2013), London, paper We.3A.6, (2013)

    Google Scholar 

  147. T. Umeki, M. Asobe, H. Takara, Y. Miyamoto, H. Takenouchi, Multi-span transmission using phase and amplitude regeneration in PPLN-based PSA. Opt. Express 21, 18170–18177 (2013)

    CrossRef  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Sygletos and K.S. Turitsyn for useful discussions. This work has been supported by the EPSRC project UNLOC (Unlocking the capacity of optical communications) EP/J017582/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia Sorokina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sorokina, M., Ellis, A., Turitsyn, S.K. (2015). Optical Information Capacity Processing. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_11

Download citation