Skip to main content

Signal Processing Using Opto-Electronic Devices

  • Chapter
  • First Online:
All-Optical Signal Processing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 194))

  • 2825 Accesses

Abstract

All-optical signal processing is a powerful tool for the processing of communication signals and optical network applications have been routinely considered since the inception of optical communication. There are many successful optical devices deployed in today’s communication networks, including optical amplification, dispersion compensation, optical cross connects and reconfigurable add drop multiplexers. However, despite record breaking performance, all-optical signal processing devices have struggled to find a viable market niche. This has been mainly due to competition from electro-optic alternatives, either from detailed performance analysis or more usually due to the limited market opportunity for a mid-link device . For example a wavelength converter would compete with a reconfigured transponder which has an additional market as an actual transponder enabling significantly more economical development. Never-the-less, the potential performance of all-optical devices is enticing. Motivated by their prospects of eventual deployment, in this chapter we analyse the performance and energy consumption of digital coherent transponders, linear coherent repeaters and modulator based pulse shaping/frequency conversion, setting a benchmark for the proposed all-optical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Ellis, N.J. Doran, Are few mode fibres a practical solution to the capacity crunch? in ICTON 2013, paper Tu.C2.1 (2013)

    Google Scholar 

  2. Optical fiber link for police computer. Electronics Weekly, Sept. 24, 3 (1975)

    Google Scholar 

  3. I.P. Kaminov, T. Li, A.E. Wilner, Optical Fiber Telecommunications V (Academic Press, Burlington, 2008)

    Google Scholar 

  4. R. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662 (2010)

    Article  ADS  Google Scholar 

  5. R.S. Tucker, Green optical communications-Part I: energy limitations in transport. J. Sel. Top. Quantum Electron. 17(2), 245 (2011)

    Google Scholar 

  6. Information Gatekeepers Inc., Lucent technologies helps BT increase network capacity and offer enhanced services. Fiber Opt. Wkly Update 17(39), 1 (1997)

    Google Scholar 

  7. P.J. Winzer, Power consumption of SDM systems, in ECOC Workshop on Integration of Optical Devices for SDM Transmission, ECOC 2013, http://www.ecoc2013.org/docs/peter-winzer.pdf (2013)

  8. A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115 (2005)

    Google Scholar 

  9. T. Okoshi, K. Kikuchi, Heterodyne type optical communications. J. Opt. Commun. 2(3), 82 (1981)

    Google Scholar 

  10. http://www.emcore.com/fiber-optics/telecom-tunable-dwdm/itla-integrable-tunable-laser-assembly/ (July 2014)

  11. B. Collings, Photonics for metro and client 100G and beyond—wants in 100G stream…!, in Next Generation Optical Networking 2014, paper day 3, stream 2, 9:40 (2014)

    Google Scholar 

  12. http://jp.fujitsu.com/group/foc/en/services/optical-devices/100gln/

  13. P. Dong, L. Chen, Y.K. Chen, High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20(6), 6163–6169 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Kikuchi, R. Hirai, Y. Wakayama, High-speed optical 64QAM signal generation using InP-based semiconductor IQ modulator, in Optical Fiber Communication Conference, M2A-2 (2014, March)

    Google Scholar 

  15. D. Korn, R. Palmer, H. Yu, P.C. Schindler, et al., Silicon-organic hybrid (SOH) IQ modulator for 16QAM at 112 Gbit/s, in The European Conference on Lasers and Electro-Optics (p. CK_9_2) (Optical Society of America, 2013, May)

    Google Scholar 

  16. Quad-Channel 32 Gbps Linear MZ Modulator Driver, http://www.macom.com/products/product-detail/MAOM-003408 (July 2014)

  17. Inphi IN3212SZ, 32 Gbps Single-Ended Mach-Zehnder Driver. http://www.inphi.com/products/in3212sz.php (July 2014)

  18. Gigoptix 4x32Gb/s MZ Linear Modulator Driver, http://www.gigoptix.com/products/gx62472/ (July 2014)

  19. M. Möller, High-speed electronic circuits for 100 Gb/s transport networks, in OFC, (2010)

    Google Scholar 

  20. B. Berglund, J. Johansson, T. Lejon, High efficiency power amplifiers. Ericsson Rev. 6, 92 (2006)

    Google Scholar 

  21. W. Forysiak, D.S. Goven, Progress towards 100 G digital coherent pluggables in InP-based photonics. J. Lightwave Technol. doi:10.1109/JLT.2014.2329754 (2014). Alternative would be W. Forysiak, Progress in InP-based photonic components and sub-systems for digital coherent systems at 100Gbit/s and beyond, in ECOC 2013, Mo.3.C.2, Vol. 32, 16, pp. 2925−2934 (2014)

  22. D.J. Malyon, Digital fibre transmission using optical homodyne detection. Electron. Lett. 20(7), 281 (1984)

    Article  Google Scholar 

  23. Y. Audzevich, P.M. Watts, A. West, A. Mujumdar, S.W. Moore, A.W. Moore, Power optimised transceivers for future switched networks. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(10), 2081−2092 (2014). doi:10.1109/TVLSI.2013.2283300

  24. M. Horowitz, E. Alon, D. Patil, S. Naffziger, K. Rajesh, K. Bernstein, Scaling power and the future of CMOS, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International (2005), pp. 7, 15

    Google Scholar 

  25. M. Kuschnerov, T. Bex, P. Kainzmaier, Energy efficient digital signal processing, in OFC 2014, paper Th3E.7 (2014)

    Google Scholar 

  26. D. Kudithipudi, E. John, Implementation of low power digital multipliers using 10 transistor adder blocks. J. Low Power Electron. 1, 1 (2005)

    Google Scholar 

  27. C. Laperle, M. O’Sullivan, Advances in high speeds DACs, ADCs and DSP for optical coherent transceivers. J. Lightwave Technol. 32(4), 629 (2014)

    Google Scholar 

  28. T. Pfau, S. Hoffmann, R. Noe, Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM Constellations. J. Lightwave Technol. 27(8), 989 (2009)

    Google Scholar 

  29. H. Dowid, H. Meyr, CORDIC algorithms and architectures, in Digital Signal Processing for Multimedia Systems (1999), pp. 623–655

    Google Scholar 

  30. M. O’Sullivan, C. Laperle, A. Borowiec, K. Farley, A 400G/1T high spectral efficiency technology and some enabling subsystems, in OFC 2012, paper OM2H1 (2012)

    Google Scholar 

  31. B.E. Jonsson, A/D-converter performance evolution, in Converter Passion, ADM Design (2012)

    Google Scholar 

  32. C. Laperle, M. O’Sullivan, Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers. J. Lightwave Technol. 32(4), 629–643 (2014)

    Article  Google Scholar 

  33. M. Nagatani, H. Nosaka, K. Sano, K. Murata, K. Kurishima, M. Ida, A 60-GS/s 6-Bit DAC in 0.5-im InP HBT technology for optical communications systems, in Compound Semiconductor Integrated Circuit Symposium (CSICS) (2011)

    Google Scholar 

  34. Y. Greshishchev, et al., A 40GS/s 6b ADC in 65 nm CMOS, in ISSCC 2010 (2010), pp. 390–392

    Google Scholar 

  35. D. Crivelli, M. Hueda, H. Carrer, J. Zachan, V. Gutnik, M. Del Barco, R. Lopez, G. Hatcher, J. Finochietto, M. Yeo, A. Chartrand, N. Swenson, P. Voois, O. Agazzi, A 40 nm CMOS single-chip 50 Gb/s DP-QPSK/BPSK transceiver with electronic dispersion compensation for coherent optical channels, in ISSCC 2012 (2012), pp. 328–330

    Google Scholar 

  36. F. Lang, T. Alpert, D. Ferenci, M. Grozing, M. Berroth, A 6 bit 25 GS/s flash interpolating ADC in 90 nm CMOS technology. in Ph.D. Research in Microelectronics and Electronics (PRIME), 2011 7th Conference on. IEEE, 2011 (2011), p. 117

    Google Scholar 

  37. Fujitsu 56GSa/s 8-bit analogue-to-digital converter Factsheet, http://www.fujitsu.com/downloads/MICRO/fme/documentation/c45.pdf (July 2014)

  38. T. Pfau, R. Peveling, V. Herath, S. Hoffmann, C. Wördehoff, O. Adamczyk, M. Porrmann, R. Noé, Towards real-time implementation of coherent optical communication, in OFC 2009, paper OThJ4 (2009)

    Google Scholar 

  39. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P.C. Schindler, A. Melikyan, Y. Xin S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, Single-laser 32.5 Tbit/s Nyquist WDM transmission. Opt. Commun. Netw. 4(10), 715–723 (2012)

    Google Scholar 

  40. E. Ip, J.M. Khan, Digital equalisation of chromatic dispersion and polarisation mode dispersion. J. Lightwave Technol. 25(8), 2033 (2007)

    Google Scholar 

  41. S.J. Savory, Digital coherent receivers: algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron. 16(5), 1164 (2010)

    Google Scholar 

  42. K. Kikuchi, Digital coherent optical communication systems: fundamentals and future prospects. IEICE Electron. Express 8(20), 1642 (2011)

    Google Scholar 

  43. B.E. Jonsson, On CMOS scaling and A/D-converter performance, in 28th IEEE CAS Norchip Conference 2010, 15–16 Nov 2010, Tampere, Finland, Tu8.1.1 (2010), p. 284

    Google Scholar 

  44. B. Spinnler, Equalizer design and complexity for digital coherent receivers. IEEE J. Sel. Top. Qunatum. Electron. 16(5), 1180 (2010)

    Google Scholar 

  45. K. Roberts, M. O’Sullivan, K.T. Wu, H. Sun, A. Awadalla, D.J. Krause, C. Laperle, Performance of dual-polarization QPSK for optical transport systems. J. Lightwave Technol. 27(16), 3546–3559 (2009)

    Google Scholar 

  46. H. Sun and K.-T. Wu, A novel dispersion and PMD tolerant clock phase detector for coherent transmission systems, in OFC, Paper OMJ4 (2011)

    Google Scholar 

  47. J.C. Geyer, C.R. Fludger, T. Duthel, C. Schulien, B. Schmauss, Efficient frequency domain chromatic dispersion compensation in a coherent Polmux QPSK-receiver, in Optical Fiber Communication Conference (Optical Society of America, 2010), p. OWV5

    Google Scholar 

  48. M.S. Faruk, K. Kikuchi, Adaptive frequency-domain equalization in digital coherent optical receivers. Opt. Express 19(13), 12789–12798 (2011)

    Google Scholar 

  49. R.A. Soriano, F.N. Hauske, N.G. Gonzalez, Z. Zhang, Y. Ye, I.T. Monroy, Chromatic dispersion estimation in digital coherent receivers. J. Lightwave Technol. 29(11), 1621 (2011)

    Google Scholar 

  50. T. Pfau, C. Wördehoff, R. Peveling, S.K. Ibrahim, S. Hoffmann, O. Adamczyk, S. Bhandare, M. Porrmann, R. Noé, A. Koslovsky, Y. Achiam, D. Schlieder, N. Grossard, J. Hauden, H. Porte, Ultra-fast adaptive digital polarization control in a realtime coherent polarization-multiplexed QPSK receiver, in OFC2008, paper OTuM3 (2008)

    Google Scholar 

  51. D.N. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 11 (1980)

    Article  Google Scholar 

  52. M.G. Taylor, Phase estimation methods for optical coherent detection using digital signal processing. J. Lightwave Technol. 27(7), 901 (2009)

    Google Scholar 

  53. Y. Gao, A.P.T. Lau, S. Yan, C. Lu, Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems. Opt. Express 19(22), 21717–21729 (2011)

    Article  ADS  Google Scholar 

  54. S.M. Bilal, G. Bosco, P. Poggiolini, A. Carena, Low-complexity linewidth-tolerant carrier phase estimation for 64-QAM systems based on constellation transformation, in ECOC (2013), p. 966

    Google Scholar 

  55. I. Fatadin, I. David, S.J. Savory, Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning. Photonics Technol. Lett. 22(9), 631–633 (2010)

    Article  ADS  Google Scholar 

  56. S.M. Bilal, A. Carena, C. Fludger, G. Bosco, Dual stage CPE for 64-QAM optical systems based on a modified QPSK-partitioning algorithm. IEEE Photonics Technol. Lett. 26(3), 267 (2014)

    Google Scholar 

  57. H.-C. Chang, C.B. Shung, C.-Y. Lee, A reed-solomon product-code (RS-PC) decoder chip for DVD applications. IEEE J. Solid-State Circuits 36(2), 229–238 (2001)

    Google Scholar 

  58. P.P. Mitra, J.B. Stark, Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001)

    Article  ADS  Google Scholar 

  59. X. Chen, W. Shieh, Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems. Opt. Express 18, 19039 (2010)

    Google Scholar 

  60. P. Poggiolini, Modeling of non-linear propagation in uncompensated coherent systems, in OFC 2013, paper OTh3G1 (2013)

    Google Scholar 

  61. A.D. Ellis, M.A. Sorokina, S. Sygletos, S.K. Turitsyn, Capacity limits in nonlinear fiber transmission, in Proceedings of Asia Communications and Photonics, Paper AW4F.1 (2013)

    Google Scholar 

  62. Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, 1024 QAM (60 Gbit/s) singe-carrier coherent optical transmission over 150 km. Opt. Express 20(11), 12508 (2012)

    Google Scholar 

  63. S. Adhikari, S. Sygletos, A.D. Ellis, B. Inan, S.L. Jansen, W. Rosenkranz, Enhanced self-coherent OFDM by the use of injection locked laser, in OFC 2012, paper JW2A.64 (2012)

    Google Scholar 

  64. B.J. Puttnam, R.S. Luís, J.M.D. Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, T. Miyazaki, Self-homodyne detection in optical communication systems. Photonics 1(2), 110 (2014)

    Google Scholar 

  65. S.J. Savory, Digital signal processing for coherent systems, in OFC 2012, paper OTh3C7 (2012)

    Google Scholar 

  66. International Roadmap for Semiconductors, http://www.itrs.net/Links/2013ITRS/Home2013.htm (June 2014)

  67. D.C. Kilper, G. Atkinson, S.K. Korotky, S. Goyal, P. Vetter, D. Suvakovic, O. Blume, Power trends in communication networks, IEEE J. Sel. Top. Quantum Electron. 17(2), 275 (2011)

    Google Scholar 

  68. B.E. Jonsson, A/D converter performance evolution, ADMS Design AB, Doc. No.: T-13:001 (2013), http://converterpassion.wordpress.com/articles/ad-converter-performance-evolution/

  69. E.F. Mateo, X. Zhou, G. Li, Electronic phase conjugation for nonlinearity compensation in fiber communication systems, in OFC, Los Angeles, CA, 2011, Paper JWA025 (2011)

    Google Scholar 

  70. B.-E. Olsson, C. Larsson, J. Martensson, A. Alping, Experimental demonstration of electro-optic mid-span spectrum inversion for mitigation of nonlinear fiber effects, in ECOC 2012, paper Th.1.D (2012)

    Google Scholar 

  71. R. Asif, G. Shabbir, A. Akram, Hybrid mid link spectral inverter to compensate for linear and nonlinear distortions for efficient transmission performance in 224 Gbit/s DP-16QAM system. Opt. Eng. 52(9), 096103 (2013)

    Google Scholar 

  72. M. Suzuki, H. Tanaka, K. Utaka, N. Edagawa, Y. Matsushima, Transform limited 14 ps optical pulse generation with 15 GHz repetition rate by InGaAsP electroabsorption modulator. Electron. Lett. 28(11), 1007 (1992)

    Google Scholar 

  73. D.G. Moodie, A.D. Ellis, A.R. Thurlow, M.J. Harlow, I.F. Lealman, S.D. Perrin, L.J. Rivers, M.J. Robertson, Multiquantum well electroabsorption modulators for 80 Gbit/s OTDM systems. Electron. Lett. 31(16), 1370 (1995)

    Google Scholar 

  74. K. Wakita, K. Sato, I. Kotaka, M. Yamamoto, M. Asobe, Transform limited 7 ps optical pulse generation using a sinusoidally driven InGaAsP/InGaAsP stained multiple quantum well DFB laser/modulator monolithically integrated. IEEE Photonics Technol. Lett. 5(8), 899 (1993)

    Google Scholar 

  75. G. Raybon, M.G. Young, U. Koren, B.I. Miller, M. Chien, M. Zirngibl, C. Dragone, N.M. Froberg, C.A. Burrus, Five channel WDM soliton pulse generation using sinusoidally driven electroabsorption modulators in 16 × 1 laser/modulator array. Electron. Lett. 31(14), 1147 (1995)

    Google Scholar 

  76. D.G. Moodie, A.D. Ellis, C.W. Ford, Generation of 6.3 ps optical pulses at a 10 GHz repetition rate using a packaged electroabsorption modulator and dispersion decreasing fibre. Electron. Lett. 30(20), 1700 (1994)

    Google Scholar 

  77. D.G. Moodie, Electroabsorption modulators and their impact on future telecommunication networks, in MSc Thesis, Electronic and Electrical Engineering Department (University College London, London, UK, 1994)

    Google Scholar 

  78. D.D. Marcenac, A.D. Ellis, D.G. Moodie, 80 Gbit/s OTDM using electroabsorption modulators. Electron. Lett. 34(1), 101–103 (1998)

    Google Scholar 

  79. L.F. Mollenauer, E. Lichtman, G.T. Harvey, M.J. Neubelt, B.M. Nyman, Demonstration of error-free soliton transmission over more than 15000 km at 5 Gbit/s, single-channel, and over more than 11000 km at 10 Gbit/s in two-channel WDM. Electron. Lett. 28(8), 792 (1992)

    Google Scholar 

  80. I.D. Phillips, A. Gloag, D.G. Moodie, N.J. Doran, I. Bennion, A.D. Ellis, Drop and insert multiplexing with simultaneous clock recovery using an electroabsorption modulator. Phonics Technol. Lett. 10(2), 291–293 (1998)

    Article  ADS  Google Scholar 

  81. A.D. Ellis, All optical networking beyond 10 Gbit/s, in PhD Thesis, School of Engineering and Applied Science (Aston University, Birmingham, UK, 1997)

    Google Scholar 

  82. T.S. Kinsel, R.T. Denton, Terminals for a high speed optical pulse code modulation communication system: II optical multiplexing and demultiplexing. Proc. IEEE 56(2), 146–154 (1968)

    Article  Google Scholar 

  83. H.A. Haus, S.T. Kirsch, K. Mathysek, F.J. Leonberger, Picosecond optical sampling. IEEE J. Quantum Electron. 16(8), 870 (1980)

    Google Scholar 

  84. J.J. Veselka, S.K. Korotky, P.V. Mamyshev, A.H. Gnauck, G. Raybon, N.M. Froberg, A soliton transmitter using a cw laser and an NRZ driven Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 8(7), 950 (1996)

    Google Scholar 

  85. P.A. Krug, D.M. Spirit, L.C. Blank, Transmission study of optical pulses at 6.2 Gbit/s generated using LiNbO3 modulators to externally modulate cw lasers, in Proceedings of 17th ACOFT (1992)

    Google Scholar 

  86. H. Haga, M. Izutsu, T. Sueta, An integrated 1x4 high speed optical switch and its applications to a time demultiplexer. J. Lightwave Technol. 3(1), 116 (1985)

    Google Scholar 

  87. G. Ishikawa, H. Ooi, Y. Akiyama, S. Taniguchi, H. Nishimoto, 80 Gbit/s (2x40 Gbit/s) transmission experiments over 667 km dispersion shifted fibre using Ti:LiNbO3 OTDM modulator and demultiplexer, in Proceedings of ECOC’96, Paper ThC.3.3 (1996)

    Google Scholar 

  88. F. Koyama, K. Iga, Frequency chirping in external modulators. J. Lightwave Technol. 6(1), 87 (1988)

    Google Scholar 

  89. A.D. Ellis, T. Widdowson, X. Shan, G.E. Wickens, D.M. Spirit, Transmission of a true single polarisation 40 Gbit/s soliton data signal over 205 km using a stabilised erbium fibre ring laser and 40 GHz electronic timing recovery. Electron. Lett. 29(11), 990 (1993)

    Article  Google Scholar 

  90. A.D. Ellis, C.W. Chow, Serial OTDM for 100 Gbit-Ethernet applications. Electron. Lett. 42(8), 485–486 (2006)

    Google Scholar 

  91. T. Matsumoto, M. Jinno, K. Kimura, K. Noguchi, Studies on optical digital cross-connect systems for very-high-speed optical communications networks, in SUPERCOMM/ICC ‘94, IEEE International Conference on ‘Serving Humanity Through Communications, vol. 2 (1994), p. 1060

    Google Scholar 

  92. A.D. Ellis, T. Widdowson, X. Shan, D.G. Moodie, A 3 Node 40 Gbit/s OTDM network experiment using electro optic switches. Electron. Lett. 30(16), 1333 (1994)

    Article  ADS  Google Scholar 

  93. V. Torres‐Company, A.M. Weiner. Optical frequency comb technology for ultra‐broadband radio‐frequency photonics. Laser Photonics Rev. 8(3), 368 (2014)

    Google Scholar 

  94. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T.J. Kippenberg, C. Koos, Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 8, 375 (2014)

    Article  ADS  Google Scholar 

  95. N.R. Newbury, Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186 (2011)

    Google Scholar 

  96. H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller, Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69(4), 327–332 (1999)

    Article  ADS  Google Scholar 

  97. Y. Fukuchi, K. Hirata, H. Ikeoka, Wavelength-tunable and bandwidth-variable ultra-flat optical frequency comb block generation from a bismuth-based actively mode-locked fiber laser. IEEE Photonics J. 6(1), 1–9 (2014)

    Google Scholar 

  98. A.D. Ellis, R.J. Manning, I.D. Phillips, D. Nesset, 1.6 ps pulse generation at 40 GHz in a phase locked ring laser incorporating highly nonlinear fibre for application to 160 Gbit/s OTDM networks. Electron. Lett. 35(8), 645 (1999)

    Google Scholar 

  99. M. Foster, J. Levy, O. Kuzucu, K. Saha, M. Lipson, A. Gaeta, Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011)

    Article  ADS  Google Scholar 

  100. C.A. Williamson, M.J. Adams, A.D. Ellis, A. Borghesani, Mode locking of semiconductor laser with curved waveguide and passive mode expander. Appl. Phys. Lett. 82(3), 322 (2003)

    Google Scholar 

  101. A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, D. Guang-Hua, Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. Photonics Technol. Lett. 21(23), 1746–1748 (2009)

    Article  ADS  Google Scholar 

  102. S. Gee, F. Quinlan, S. Ozharar, P.J. Delfyett, J.J. Plant, P.W. Judoawlkis, Optical frequency comb generation from modelocked diode lasers—techniques and applications, in Digest of the LEOS Summer Topical Meetings (2005), pp. 71–72

    Google Scholar 

  103. D.J. Richardson, R.P. Chamberlin, L. Dong, D.N. Payne, A.D. Ellis, T. Widdowson, D.M. Spirit, Demonstration of 205 km transmission of 35 GHz, 5 ps pulses generated from a diode driven, low jitter, beat signal to soliton conversion source. Electron. Lett. 31(6), 470 (1995)

    Google Scholar 

  104. J.J. Veselka, S.K. Korotky, A multiwavelength source having precise channel spacing for WDM systems. Photonics Technol. Lett. 10(7), 958–960 (1998)

    Article  ADS  Google Scholar 

  105. Z. Tong, A. Wiberg, E. Myslivets, B. Kuo, N. Alic, S. Radic, Spectral linewidth preservation in parametric frequency combs seeded by dual pumps. Opt. Express 20, 17610–17619 (2012)

    Article  ADS  Google Scholar 

  106. R.P. Scott, N.K. Fontaine, J.P. Heritage, B.H. Kolner, S.J.B. Yoo, 3.5-THz wide, 175 mode optical comb source, in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. PaperOWJ3 (2007)

    Google Scholar 

  107. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. Barry, P. Anandarajah, 40 nm wavelength tunable gain-switched optical comb source. Opt. Express 19, B415–B420 (2011)

    Google Scholar 

  108. M. Kourogi, K.I. Nakagawa, M. Ohtsu, Wide-span optical frequency comb generator for accurate optical frequency difference measurement. J. Quantum Electron. 29(10), 2693–2701 (1993)

    Article  ADS  Google Scholar 

  109. C. Cox, E. Ackerman, H. Roussell, P. Staecker, R. Osgood, T. Izuhara, D. Djukic, N. Jain, N. Design of a broadband electro-optic modulator with very low Vπ, in Technical Paper, Photonic Systems (2003)

    Google Scholar 

  110. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, K. Iwatsuki, Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation. IEEE J. Lightwave Technol. 21, 2705–2714 (2003)

    Article  ADS  Google Scholar 

  111. J.J. O’Reilly, P.M. Lane, R. Heidemann, R. Hofstetter, Optical generation of very narrow linewidth millimetre wave signals. Electron. Lett. 28, 2309 (1992)

    Google Scholar 

  112. T. Sakamoto, T. Kawanishi, M. Izutsu, Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator. Electron. Lett. 43(19), 1039–1040 (2007)

    Article  Google Scholar 

  113. I.L. Gheorma, G.K. Gopalakrishnan, Flat frequency comb generation with an integrated dual-parallel modulator. Photonics Technol. Lett. 19(13), 1011 (2007)

    Google Scholar 

  114. A.K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, Flexible RF-based comb generator. Photonics Technol. Lett. 25(7), 701–704 (2013)

    Article  ADS  Google Scholar 

  115. W. Li, J. Yao, Investigation of photonically assisted microwave frequency multiplication based on external modulation. Trans. Microwave Theory Tech. 58(11), 3259–3268 (2010)

    Article  Google Scholar 

  116. T. Healy, F.C. Garcia.Gunning, A.D. Ellis, J. Bull, Multi-wavelength source using low drive-voltage amplitude modulators for optical communications. Opt. Express 15(6), 2981–2986 (2007)

    Article  ADS  Google Scholar 

  117. Q. Chang, J. Gao, Y. Su, Generation of optical comb frequency signal with high spectral flatness using two cascaded optical modulators, in Optical Fiber Communication & Optoelectronic Exposition & Conference 2008, paper SaB.4 (2008)

    Google Scholar 

  118. K.P. Ho, J.M. Kahn, Optical frequency comb generator using phase modulation in amplified circulating loop. Photonics Technol. Lett. 5(6), 721–725 (1993)

    Article  ADS  Google Scholar 

  119. C.T. Lin, P.T. Shih, J. Chen, W. Xue, P.C. Peng, S. Chi, Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. Photonics Technol. Lett. 20(12), 1027–1029 (2008)

    Article  ADS  Google Scholar 

  120. C. O’Riordan, S.J. Fabbri, A.D. Ellis, Variable optical frequency comb source using a dual parallel Mach-Zehnder modulator, in ICTON 2011, Paper Tu.B1.5 (2011)

    Google Scholar 

  121. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset. Opt. Lett. 38, 552–554 (2013)

    Article  ADS  Google Scholar 

  122. T. Saitoh, M. Kourogi, M. Ohtsu, Expansion of span-width of an optical frequency comb using a higher harmonic wave modulation. Photonics Technol. Lett. 8(10), 1379–1381 (1996)

    Article  ADS  Google Scholar 

  123. J. Zhang, J. Yu, L. Tao, Y. Fang, Y. Wang, Y. Shao, N. Chi, Generation of coherent and frequency-lock optical subcarriers by cascading phase modulators driven by sinusoidal sources. J. Lightwave Technol. 30(24), 3911–3917 (2012)

    Article  ADS  Google Scholar 

  124. S. Fabbri, S. Sygletos, A. Ellis, Multi-harmonic optical comb generation, in ECOC 2012, paper Mo2A2 (2012)

    Google Scholar 

  125. Y. Lu, Y. Xing, Y. Dong, Equal-amplitude optical comb generation using multi-frequency phase modulation in optical fibers. Chin. Opt. Lett. 8, 316–319 (2010)

    Article  Google Scholar 

  126. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P.J. Delfyett, Ultraflat optical comb generation by phase-only modulation of continuous-wave light. Photonics Technol. Lett. 20(1), 36–38 (2008)

    Article  ADS  Google Scholar 

  127. M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, K. Higuma, Optical frequency comb generation using dual frequency optical phase modulation, in Integrated Photonics Research and Applications/Nanophotonics for Information Systems, Technical Digest (Optical Society of America, 2005), paper ITuF5 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCarthy, M., Fabbri, S., Ellis, A. (2015). Signal Processing Using Opto-Electronic Devices. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_10

Download citation

Publish with us

Policies and ethics