Skip to main content

Materials and Structures for Nonlinear Photonics

  • Chapter
  • First Online:
All-Optical Signal Processing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 194))

Abstract

In this chapter we summarize progress in materials and structures for all-optical signal processing that employ either the second or third order optical nonlinearity. Three-wave mixing and cascading in periodically-poled lithium niobate waveguides dominates signal processing in second order materials. In the case of third-order nonlinearities, four wave mixing is the dominant physical process but here the range of materials that have been employed is wider and ranges from glasses to both active and passive semiconductor devices. This chapter provides a brief summary of the advantages and disadvantages of each class of materials and device structure as well as the state-of-the-art for each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.I. Stegeman, E.M. Wright, All-optical wave-guide switching. Opt. Quant. Electron. 22, 95–122 (1990)

    Google Scholar 

  2. N.J. Doran, D. Wood, Nonlinear-optical loop mirror. Opt. Lett. 13, 56–58 (1988)

    ADS  Google Scholar 

  3. L.D. Haret, T. Tanabe, E. Kuramochi, M. Notomi, Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity. Opt. Express 17, 21108–21117 (2009)

    Google Scholar 

  4. V. Mizrahi, K.W. Delong, G.I. Stegeman, M.A. Saifi, M.J. Andrejco, 2-Photon absorption as a limitation to all-optical switching. Opt. Lett. 14, 1140–1142 (1989)

    ADS  Google Scholar 

  5. M. Sheikbahae, D.J. Hagan, E.W. Vanstryland, Dispersion and band-gap scaling of the electronic kerr effect in solids associated with 2-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990)

    ADS  Google Scholar 

  6. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296–1309 (1991)

    ADS  Google Scholar 

  7. M.H.M. Sheik-Bahae, Third order optical nonlinearities, in Handbook of Optics (OSA, 2000)

    Google Scholar 

  8. M. Dinu, Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE J. Quantum Electron. 39, 1498–1503 (2003)

    ADS  Google Scholar 

  9. X. Gai, Y. Yu, B. Kuyken, P. Ma, S.J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies, Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photonics Rev. 7, 1054–1064 (2013)

    Google Scholar 

  10. B.S. Wherrett, Scaling rules for multiphoton interband absorption in semiconductors. J. Opt. Soc. Am. B: 1, 67–72 (1984)

    ADS  Google Scholar 

  11. G.I. Stegeman, D.J. Hagan, L. Torner, Chi((2)) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691–1740 (1996)

    Google Scholar 

  12. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide. IEEE Photonic Tech. L. 11, 328–330 (1999)

    ADS  Google Scholar 

  13. J.L. Jackel, J.J. Johnson, Reverse exchange method for burying proton exchanged wave-guides. Electron. Lett. 27, 1360–1361 (1991)

    Google Scholar 

  14. Y.N. Korkishko, V.A. Fedorov, T.M. Morozova, F. Caccavale, F. Gonella, F. Segato, Reverse proton exchange for buried waveguides in LiNbO3. J. Opt. Soc. Am. A: 15, 1838–1842 (1998)

    ADS  Google Scholar 

  15. M.L. Bortz, M.M. Fejer, Measurement of the 2nd-order nonlinear susceptibility of proton-exchanged Linbo3. Opt. Lett. 17, 704–706 (1992)

    ADS  Google Scholar 

  16. Y.N. Korkishko, V.A. Fedorov, F. Laurell, The SHG-response of different phases in proton exchanged lithium niobate waveguides. IEEE J. Sel. Top. Quantum 6, 132–142 (2000)

    Google Scholar 

  17. C. Langrock, S. Kumar, J.E. McGeehan, A.E. Willner, M.M. Fejer, All-optical signal processing using chi((2)) nonlinearities in guided-wave devices. J. Lightwave Technol. 24, 2579–2592 (2006)

    ADS  Google Scholar 

  18. R.V. Roussev, C. Langrock, J.R. Kurz, M.M. Fejer, Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004)

    ADS  Google Scholar 

  19. M.H. Chou, K.R. Parameswaran, M.M. Fejer, I. Brener, Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides. Opt. Lett. 24, 1157–1159 (1999)

    ADS  Google Scholar 

  20. G.W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, H. Ito, 160 Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide. Opt. Express 18, 6064–6070 (2010)

    ADS  Google Scholar 

  21. M.H. Chou, I. Brener, G. Lenz, R. Scotti, E.E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K.R. Parameswaran, M.M. Fejer, Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides. IEEE Photonics Technol. Lett. 12, 82–84 (2000)

    ADS  Google Scholar 

  22. M.C. Cardakli, D. Gurkan, S.A. Havstad, A.E. Willner, K.R. Parameswaran, M.M. Fejer, I. Brener, Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency-generation and optical buffers. IEEE Photonics Technol. Lett. 14, 200–202 (2002)

    ADS  Google Scholar 

  23. A.E. Willner, O.F. Yilmaz, J.A. Wang, X.X. Wu, A. Bogoni, L. Zhang, S.R. Nuccio, Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum 17, 320–332 (2011)

    Google Scholar 

  24. J. Huang, J.R. Kurz, C. Langrock, A.M. Schober, M.M. Fejer, Quasi-group-velocity matching using integrated-optic structures. Opt. Lett. 29, 2482–2484 (2004)

    ADS  Google Scholar 

  25. A. Bogoni, X.X. Wu, S.R. Nuccio, A.E. Willner, 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. J. Lightwave Technol. 30, 1829–1834 (2012)

    ADS  Google Scholar 

  26. X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies, Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(−1)m(−1) at 1550 nm. Opt. Express 18, 18866–18874 (2010)

    ADS  Google Scholar 

  27. X. Gai, R.P. Wang, C. Xiong, M.J. Steel, B.J. Eggleton, B. Luther-Davies, Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis. Opt. Express 20, 776–786 (2012)

    ADS  Google Scholar 

  28. X. Gai, D.-Y. Choi, S. Madden, B. Luther-Davies, Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing. Opt. Express 20, 13513–13521 (2012)

    ADS  Google Scholar 

  29. X. Gai, D.Y. Choi, S. Madden, B. Luther-Davies, Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides. J. Opt. Soc. Am. B: 28, 2777–2784 (2011)

    ADS  Google Scholar 

  30. M.H.T. Okuno, T. Nakanishi, M. Onishi, Highly-nonlinear optical fibers and their applications. SEI Tech. Rev. 62, 34–40 (2006)

    Google Scholar 

  31. R.E. Camacho-Aguilera, Y. Cai, J.T. Bessette, L.C. Kimerling, J. Michel, High active carrier concentration in n-type, thin film Ge using delta-doping. Opt. Mater. Express 2, 1462–1469 (2012)

    Google Scholar 

  32. L. Vivien, J. Osmond, J.M. Fedeli, D. Marris-Morini, P. Crozat, J.F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 17, 6252–6257 (2009)

    ADS  Google Scholar 

  33. A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    ADS  Google Scholar 

  34. V.G. Ta’eed, N.J. Baker, L.B. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies, Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15, 9205–9221 (2007)

    ADS  Google Scholar 

  35. J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010)

    ADS  Google Scholar 

  36. X. Chen, C. Li, H.K. Tsang, Device engineering for silicon photonics. Npg Asia Mater. 3, 34–40 (2011)

    Google Scholar 

  37. V.R. Almeida, R.R. Panepucci, M. Lipson, Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    ADS  Google Scholar 

  38. A.R. Motamedi, A.H. Nejadmalayeri, A. Khilo, F.X. Kartner, E.P. Ippen, Ultrafast nonlinear optical studies of silicon nanowaveguides. Opt. Express 20, 4085–4101 (2012)

    ADS  Google Scholar 

  39. C. Koos, L. Jacome, C. Poulton, J. Leuthold, W. Freude, Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)

    ADS  Google Scholar 

  40. J.M. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)

    ADS  Google Scholar 

  41. M.A. Foster, A.C. Turner, R. Salem, M. Lipson, A.L. Gaeta, Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express 15, 12949–12958 (2007)

    ADS  Google Scholar 

  42. H. Hu, J.D. Andersen, A. Rasmussen, B.M. Sorensen, K. Dalgaard, M. Galili, M. Pu, K. Yvind, K.J. Larsen, S. Forchhammer, L.K. Oxenlowe, Forward error correction supported 150 Gbit/s error-free wavelength conversion based on cross phase modulation in silicon. Opt. Express 21, 3152–3160 (2013)

    ADS  Google Scholar 

  43. F.G. Della Corte, S. Rao, Use of amorphous silicon for active photonic devices. IEEE Trans. Electron Devices 60, 1495–1505 (2013)

    Google Scholar 

  44. G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, E. Terzi, Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics. IEEE J. Sel. Top. Quantum 4, 997–1002 (1998)

    Google Scholar 

  45. K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, Y. Sakakibara, Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material. Appl. Phys. Lett. 100 (2012)

    Google Scholar 

  46. C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J.M. Fedeli, I. Cristiani, Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics. Appl. Phys. Lett. 103 (2013)

    Google Scholar 

  47. K.Y. Wang, A.C. Foster, Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012)

    ADS  Google Scholar 

  48. B. Kuyken, S. Clemmen, S.K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt. Lett. 36, 552–554 (2011)

    ADS  Google Scholar 

  49. B. Kuyken, H. Ji, S. Clemmen, S.K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L.K. Oxenlowe, G. Roelkens, R. Baets, Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express 19, 146–153 (2011)

    Google Scholar 

  50. D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson, New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics 7, 597–607 (2013)

    ADS  Google Scholar 

  51. J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta, M. Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2010)

    ADS  Google Scholar 

  52. G.N. Parsons, J.H. Souk, J. Batey, Low hydrogen content stoichiometric silicon-nitride films deposited by plasma-enhanced chemical vapor-deposition. J. Appl. Phys. 70, 1553–1560 (1991)

    ADS  Google Scholar 

  53. S.C. Mao, S.H. Tao, Y.L. Xu, X.W. Sun, M.B. Yu, G.Q. Lo, D.L. Kwong, Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express 16, 20809–20816 (2008)

    ADS  Google Scholar 

  54. J.B. Nadal, J.M. Díaz, D. Vukovic, F.Da Ros, E. Palushani, C. Peucheret, A comparison of nonlinear media for parametric all-optical signal processing. IEEE Photonic Conf. ThG1.5 (2013)

    Google Scholar 

  55. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, C. De Angelis, Chalcogenide glasses with large non-linear refractive indices. J. Non-Cryst. Solids 239, 139–142 (1998)

    ADS  Google Scholar 

  56. J.T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King, M. Shurgalin, Third order nonlinearities in Ge–As–Se-based glasses for telecommunications applications. J. Appl. Phys. 96, 6931–6933 (2004)

    ADS  Google Scholar 

  57. J.S. Sanghera, L.B. Shaw, P. Pureza, V.Q. Nguyen, D. Gibson, L. Busse, I.D. Aggarwal, C.M. Florea, F.H. Kung, Nonlinear properties of chalcogenide glass fibers. Int. J. Appl. Glass Sci. 1, 296–308 (2010)

    Google Scholar 

  58. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, J. Lucas, Chalcogenide glasses with high non linear optical properties for telecommunications. J. Phys. Chem. Solids 62, 1435–1440 (2001)

    ADS  Google Scholar 

  59. R.A. Ganeev, A.I. Ryasnyansky, M.K. Kodirov, T. Usmanov, Two-photon absorption and nonlinear refraction of amorphous chalcogenide films. J. Opt. Pure Appl. Opt. 4, 446–451 (2002)

    ADS  Google Scholar 

  60. M. Asobe, Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Opt. Fiber Technol. 3, 142–148 (1997)

    ADS  Google Scholar 

  61. S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta’eed, M.D. Pelusi, B.J. Eggleton, Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007)

    ADS  Google Scholar 

  62. M. Pelusi, F. Luan, T.D. Vo, M.R.E. Lamont, S.J. Madden, D.A. Bulla, D.Y. Choi, B. Luther-Davies, B.J. Eggleton, Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat. Photonics 3, 139–143 (2009)

    ADS  Google Scholar 

  63. T.D. Vo, M.D. Pelusi, J. Schroder, F. Luan, S.J. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies, B.J. Eggleton, Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer. Opt. Express 18, 3938–3945 (2010)

    Google Scholar 

  64. M.D. Pelusi, F. Luan, D.Y. Choi, S.J. Madden, D.A.P. Bulla, B. Luther-Davies, B.J. Eggleton, Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber. Opt. Express 18, 26686–26694 (2010)

    ADS  Google Scholar 

  65. T.D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L.K. Oxenlowe, S.J. Madden, D.Y. Choi, D.A.P. Bulla, M.D. Pelusi, J. Schroder, B. Luther-Davies, B.J. Eggleton, Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal. Opt. Express 18, 17252–17261 (2010)

    ADS  Google Scholar 

  66. M. Galili, J. Xu, H.C.H. Mulvad, L.K. Oxenlowe, A.T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.Y. Choi, M. Pelusi, F. Luan, B.J. Eggleton, Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. Opt. Express 17, 2182–2187 (2009)

    ADS  Google Scholar 

  67. M.R.E. Lamont, B. Luther-Davies, D.Y. Choi, S. Madden, X. Gai, B.J. Eggleton, Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008)

    ADS  Google Scholar 

  68. M.R.E. Lamont, B. Luther-Davies, D.Y. Choi, S. Madden, B.J. Eggleton, Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10/W/m) As(2)S(3) chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008)

    ADS  Google Scholar 

  69. A. Zakery, P.J.S. Ewen, A.E. Owen, Photodarkening in As-S films and its application in grating fabrication. J. Non-Cryst. Solids 198, 769–773 (1996)

    ADS  Google Scholar 

  70. A. Prasad, C.J. Zha, R.P. Wang, A. Smith, S. Madden, B. Luther-Davies, Properties of GexAsySe1-x-y glasses for all-optical signal processing. Opt. Express 16, 2804–2815 (2008)

    ADS  Google Scholar 

  71. A. Prasad, Ge–As–Se chalcogenide glasses for all-optical signal processing, in Laser Physics Center (Australian National University, Australia, 2010)

    Google Scholar 

  72. J. He, C. Xiong, A.S. Clark, M.J. Collins, X. Gai, D.Y. Choi, S.J. Madden, B. Luther-Davies, B.J. Eggleton, Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire, J Appl. Phys. 112 (2012)

    Google Scholar 

  73. X. Gai, B. Luther-Davies, T.P. White, Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000). Opt. Express 20, 15503–15515 (2012)

    Google Scholar 

  74. E. Ciaramella, Wavelength conversion and all-optical regeneration: achievements and open issues. J. Lightwave Technol. 30, 572–582 (2012)

    ADS  Google Scholar 

  75. C.S. Cleary, High speed nonlinear optical components for next-generation optical communications, PhD. Thesis, Photonic Systems Group, Tyndall National Institute, Department of Physics, University College Cork, 2013

    Google Scholar 

  76. R. Bonk, Linear and Nonlinear Semiconductor Optical Amplifiers for Next-Generation Optical Networks (KIT Scientific Publishing, 2013)

    Google Scholar 

  77. J. Leuthold, W. Freude, G. Boettger, J. Wang, A. Marculescu, P. Vorreau, R. Bonk, All-optical regeneration, in ICTON 2006: 8th International Conference on Transparent Optical Networks, Vol 1, Proceedings: ICTON, MPM, INDUSTRIAL, PICAW, GOWN, ed. by Marciniak, (2006), pp. 28–31

    Google Scholar 

  78. J. Leuthold, J. Wang, T. Vallaitis, C. Koos, R. Bonk, A. Marculescu, P. Vorreau, S. Sygletos, W. Freude, New approaches to perform all-optical signal regeneration, in ICTON 2007: Proceedings of the 9th International Conference on Transparent Optical Networks, Vol 2, ed. by Marciniak, (2007), pp. 222–225

    Google Scholar 

  79. R.J. Manning, R. Giller, X. Yang, R.P. Webb, D. Cotter, Faster switching with semiconductor optical amplifiers, in 2007 Photonics in Switching (2007), pp. 145–146

    Google Scholar 

  80. S. Diez, C. Schmidt, R. Ludwig, H.G. Weber, K. Obermann, S. Kindt, I. Koltchanov, K. Petermann, Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997)

    Google Scholar 

  81. H. Ishikawa, Ultrafast All-Optical Signal Processing Devices (Wiley, Chichester, 2008)

    Google Scholar 

  82. N. Christodoulides, I. Khoo, G. Salamo, G. Stegeman, E. Van Stryland, Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photonics 2, 60–200 (2010)

    Google Scholar 

  83. K. Hall, G. Lenz, A. Darwish, E. Ippen, Subpicosecond gain and index nonlinearities in InGaAsP diode lasers. Opt. Commun. 111, 589–612 (1994)

    ADS  Google Scholar 

  84. R.S. Grant, W. Sibbett, Observatiobns of ultrafast nonlinear refraction in an InGaAsP optical amplifier. Appl. Phys. Lett. 58, 1119–1121 (1991)

    ADS  Google Scholar 

  85. G.P. Agrawal, N.A. Olsson, Self phase modulation and spectral braodening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    ADS  Google Scholar 

  86. K. Abedi, H. Taleb, Phase recovery acceleration in quantum-dot semiconductor optical amplifiers. J. Lightwave Technol. 30, 1924–1930 (2012)

    Google Scholar 

  87. L.G. Chen, R.G. Lu, S.J. Zhang, J.F. Li, Y. Liu, Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all-optical switches, Opt. Eng. 52 (2013)

    Google Scholar 

  88. A.H. Flayyih, A.H. Al-Khursan, Theory of four-wave mixing in quantum dot semiconductor optical amplifiers, J. Phy. D-Appl. Phys. 46 (2013)

    Google Scholar 

  89. W. Freude, R. Bonk, T. Vallaitis, A. Marculescu, A. Kapoor, E.K. Sharma, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, G.H. Duan, C. Koos, J. Leuthold, IEEE linear and nonlinear semiconductor optical amplifiers, in 2010 12th International Conference on Transparent Optical Networks (2011)

    Google Scholar 

  90. S.R. Hosseini, M. Razaghi, N.K. Das, Analysis of ultrafast nonlinear phenomena’s influences on output optical pulses and four-wave mixing characteristics in semiconductor optical amplifiers. Opt. Quantum Electron. 42, 729–737 (2011)

    Google Scholar 

  91. X. Huang, C. Qin, Y. Yu, X.L. Zhang, Acceleration of carrier recovery in a quantum well semiconductor optical amplifier due to the tunneling effect. J. Opt. Soc. Am. B-Opt. Phy. 29, 2990–2994 (2012)

    ADS  Google Scholar 

  92. J.H. Kim, Influence of optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot semiconductor optical amplifiers, J. Opt. 15 (2013)

    Google Scholar 

  93. A. Kotb, 1 Tb/s high quality factor NOR gate based on quantum-dot semiconductor optical amplifier. Opt. Quantum Electron. 45, 1259–1268 (2013)

    Google Scholar 

  94. T. Liu, K. Obermann, K. Petermann, F. Girardin, G. Guekos, Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance. Electron. Lett. 33, 2042–2043 (1997)

    Google Scholar 

  95. Y. Liu, L.G. Chen, X. Zheng, S.J. Zhang, R.G. Lu, Ultrafast nonlinear dynamics in semiconductor optical amplifiers for optical signal processing, in Semiconductor Lasers and Applications V, eds. by Zhu, Li, Peters, Yu (Spie-Int Soc Optical Engineering, Bellingham, (2012)

    Google Scholar 

  96. F.D. Mahad, A.S.M. Supa’at, S.M. Idrus, D. Forsyth, Analyses of semiconductor optical amplifier (SOA) four-wave mixing (FWM) for future all-optical wavelength conversion. Optik 124, 1–3 (2013)

    ADS  Google Scholar 

  97. K. Solis-Trapala, H.J.S. Dorren, Dynamic and static gain characteristics of quantum-dot semiconductor optical amplifiers operating at 1.55 mu m. Opt. Commun. 298, 106–113 (2013)

    ADS  Google Scholar 

  98. R. Giller, R.J. Manning, G. Talli, R.P. Webb, M.J. Adams, Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds. Opt. Express 15, 1773–1782 (2007)

    ADS  Google Scholar 

  99. F. Ginovart, J. Simon, I. Valiente, Gain recovery dynamics in semiconductor optical amplifier. Opt. Commun. 199, 111–115 (2001)

    ADS  Google Scholar 

  100. F. Girardin, G. Guekos, A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 10, 784–786 (1998)

    ADS  Google Scholar 

  101. R. Manning, A. Ellis, A. Poustie, K. Blow, Semiconductor laser amplifiers for ultrafast all-optical signal processing. JOSA B 14, 3204–3216 (1997)

    ADS  Google Scholar 

  102. J. Mørk, M. Nielsen, T. Berg, The dynamics of semiconductor optical amplifier: modeling and applications. Opt. Photonics News 14, 42–48 (2003)

    ADS  Google Scholar 

  103. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, K. Otsubo, H. Ebe, Quantum-dot semiconductor optical amplifiers, in APOC 2002: Asia-Pacific Optical and Wireless Communications; Materials and Devices for Optical and Wireless Communications, eds. by Chang Hasnain, Xia, Iga (2002), pp. 259–275

    Google Scholar 

  104. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, J. Leuthold, Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16, 170–178 (2008)

    ADS  Google Scholar 

  105. C. Cleary, M. Power, S. Schneider, R. Webb, R. Manning, Fast gain recovery rates with strong wavelength dependence in a non-linear SOA. Opt. Express 18, 25726–25737 (2010)

    ADS  Google Scholar 

  106. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, H. Ishikawa, Ultrafast nonlinear processes in quantum-dot optical amplifiers. Opt. Quantum Electron. 33, 927–938 (2001)

    Google Scholar 

  107. A. Rostami, H. Nejad, R. Qartavol, H. Saghai, Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46, 354–360 (2010)

    ADS  Google Scholar 

  108. S. Alavizadeh, H. Baghban, A. Rostami, Quantum-dot semiconductor optical amplifier performance management under optical injection. J. Mod. Opt. 60, 509–514 (2013)

    Google Scholar 

  109. H.J.S. Dorren, A.K. Mishra, Z.G. Li, H.K. Ju, H. de Waardt, G.D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, T. Hasama, All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier. IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004)

    Google Scholar 

  110. A.K. Mishra, X. Yang, D. Lenstra, G.D. Khoe, H.J.S. Dorren, Wavelength conversion employing 120-fs optical pulses in an SOA-based nonlinear polarization switch. IEEE J. Sel. Top. Quantum Electron. 10, 1180–1186 (2004)

    Google Scholar 

  111. X. Yang, A.K. Mishra, D. Lenstra, F.M. Huijskens, H. de Waardt, G.D. Khoe, H.J.S. Dorren, Sub-picosecond all-optical switch using a multi-quantum-well semiconductor optical amplifier. Opt. Commun. 236, 329–334 (2004)

    ADS  Google Scholar 

  112. J. Leuthold, R. Bonk, T. Vallaitis, A. Marculescu, W. Freude, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, G.H. Duan, Linear and nonlinear semiconductor optical amplifiers, paper OThI3,” in 2010 Conference on Optical Fiber Communication (OFC) Collocated with National Fiber Optic Engineers Conference (NFOEC) (IEEE, 2010)

    Google Scholar 

  113. E. Tangdiongga, Y. Liu, H. de Waardt, G.D. Khoe, A.M.J. Koonen, H.J.S. Dorren, X. Shu, I. Bennion, All-optical demultiplexing of 640–40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett. 32, 835–837 (2007)

    ADS  Google Scholar 

  114. A.H. Flayyih, A.H. Al-Khursan, Four-wave mixing in quantum dot semiconductor optical amplifiers. Appl. Optics 52, 3156–3165 (2013)

    ADS  Google Scholar 

  115. J. Inoue, H. Kawaguchi, Highly nondegenerate four-wave mixing among subpicosecond optical pulses in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 10, 349–351 (1998)

    ADS  Google Scholar 

  116. K. Kikuchi, C. Lorattanasane, K. Saito, Telenor, Phase-conjugation characteristics of semiconductor optical amplifiers, in 22nd European Conference on Optical Communications, Proceedings, Vols 1–6: Co-Located With: 2nd European Exhibition on Optical Communication—Eeoc ‘96(1996), pp. C269-C272

    Google Scholar 

  117. M.A. Summerfield, R.S. Tucker, Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999)

    Google Scholar 

  118. Y. Kim, H. Lee, J. Jeong, Analysis of four-wave mixing in semiconductor optical amplifiers for optical frequency conversion and optical phase conjugation. J. Korean Phys. Soc. 34, S582–S586 (1999)

    Google Scholar 

  119. K. Kikuchi, K. Matsuura, Transmission of 2-ps optical pulses at 1550 nm over 40 km standard fiber using midspan optical phase conjugation in semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 10, 1410–1412 (1998)

    ADS  Google Scholar 

  120. M.J. Connelly, C.L. Janer, Modeling of semiconductor optical amplifier RIN and phase noise for optical PSK systems. Opt. Quantum Electron. 44, 219–225 (2012)

    Google Scholar 

  121. W.H. Wu, Y. Yu, B.R. Zou, W.L. Yang, X.L. Zhang, Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals. Opt. Express 21, 6718–6723 (2013)

    ADS  Google Scholar 

  122. J.P.R. Lacey, S.J. Madden, M.A. Summerfield, R.S. Tucker, A.I. Faris, 4-Channel WDM optical-phase conjugator using 4-wave-mixing in a single semiconductor optical amplifier. Electron. Lett. 31, 743–744 (1995)

    ADS  Google Scholar 

  123. M. Matsuura, N. Calabretta, O. Raz, H.J.S. Dorren, Multichannel wavelength conversion of 50 Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier. Opt. Express 19, 560–566 (2011)

    Google Scholar 

  124. T. Hirooka, M. Okazaki, T. Hirano, P.Y. Guan, M. Nakazawa, S. Nakamura, All-optical demultiplexing of 640 Gb/s OTDM-DPSK signal using a semiconductor SMZ switch. IEEE Photonics Technol. Lett. 21, 1574–1576 (2009)

    ADS  Google Scholar 

  125. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, Error-free 320–40 Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier. Opt. Lett. 38, 238–240 (2013)

    ADS  Google Scholar 

  126. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Opt. Express 19, 551–559 (2011)

    Google Scholar 

  127. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, X.W. Shu, I. Bennion, H.J.S. Dorren, Errior-free 320 Gb/s all-omtical wavelength conversion using a single semiconductor optical amplifier. J. Lightwave Technol. 25, 103–108 (2007)

    ADS  Google Scholar 

  128. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers. Opt. Lett. 36, 2910–2912 (2011)

    ADS  Google Scholar 

  129. G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Opt. Express 20, 27902–27907 (2012)

    ADS  Google Scholar 

  130. G. Contestabile, Y. Yoshida, A. Maruta, K.I. Kitayama, Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technol. Lett. 25, 791–794 (2013)

    ADS  Google Scholar 

  131. J. Lu, J.J. Yu, H. Zhou, Y. Li, L. Chen, Polarization insensitive wavelength conversion based on dual-pump four-wave mixing for polarization multiplexing signal in SOA. Opt. Commun. 284, 5364–5371 (2011)

    ADS  Google Scholar 

  132. R.M. Jopson, R.E. Tench, Polarization independent phase conjugation of lightwave signals. Electron. Lett. 29, 2216–2217 (1993)

    Google Scholar 

  133. J.P.R. Lacey, M.A. Summerfield, S.J. Madden, Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers. J. Lightwave Technol. 16, 2419–2427 (1998)

    ADS  Google Scholar 

  134. B. Filion, W.C. Ng, A.T. Nguyen, L.A. Rusch, S. LaRochelle, Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier. Opt. Express 21, 19825–19833 (2013)

    ADS  Google Scholar 

  135. C. Porzi, A. Bogoni, G. Contestabile, Regenerative wavelength conversion of DPSK signals through FWM in an SOA. IEEE Photonics Technol. Lett. 25, 175–178 (2013)

    ADS  Google Scholar 

  136. N. Andriolli, S. Faralli, X.J.M. Leijtens, J. Bolk, G. Contestabile, Monolithically integrated all-optical regenerator for constant envelope WDM signals. J. Lightwave Technol. 31, 322–327 (2013)

    ADS  Google Scholar 

  137. R.X. Yu, N.K. Fontaine, R. Proietti, B.B. Guan, S.J.B. Yoo, All-optical phase conjugation using a 90° optical hybrid and nested SOA-MZIs, in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Luther-Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gai, X., Choi, DY., Madden, S., Luther-Davies, B. (2015). Materials and Structures for Nonlinear Photonics. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_1

Download citation

Publish with us

Policies and ethics