Skip to main content

Solving Hamiltonian Cycle by an EPT Algorithm for a Non-sparse Parameter

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8959))

Abstract

Many hard graph problems, such as Hamiltonian Cycle, become FPT when parameterized by treewidth, a parameter that is bounded only on sparse graphs. When parameterized by the more general parameter clique-width, Hamiltonian Cycle becomes W[1]-hard, as shown by Fomin et al. [5]. Sæther and Telle address this problem in their paper [14] by introducing a new parameter, split-matching-width, which lies between treewidth and clique-width in terms of generality. They show that even though graphs of restricted split-matching-width might be dense, solving problems such as Hamiltonian Cycle can be done in FPT time.

Recently, it was shown that Hamiltonian Cycle parameterized by treewidth is in EPT [1,6], meaning it can be solved in \(n^{\mathcal{O}(1)}2^{\mathcal{O}(k)}\)-time. In this paper, using tools from [6], we show that also parameterized by split-matching-width Hamiltonian Cycle is EPT. To the best of our knowledge, this is the first EPT algorithm for any ”globally constrained” graph problem parameterized by a non-trivial and non-sparse structural parameter. To accomplish this, we also give an algorithm constructing a branch decomposition approximating the minimum split-matching-width to within a constant factor. Combined, these results show that the algorithms in [14] for Edge Dominating Set, Chromatic Number and Max Cut all can be improved. We also show that for Hamiltonian Cycle and Max Cut the resulting algorithms are asymptotically optimal under the Exponential Time Hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Cunningham, W.H.: Decomposition of directed graphs. SIAM Journal on Algebraic Discrete Methods 3(2), 214–228 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cygan, M., Nederlof, J., Pilipczuk, M., Rooij, J.M.M.v., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings FOCS, pp. 150–159. IEEE (2011)

    Google Scholar 

  4. Flum, J., Grohe, M.: Parameterized complexity theory, vol. 3. Springer (2006)

    Google Scholar 

  5. Fomin, F.V., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM Journal on Computing 39(5), 1941–1956 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: Proceedings SODA, pp. 142–151 (2014)

    Google Scholar 

  7. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: Proceedings SODA, pp. 777–789. SIAM (2011)

    Google Scholar 

  9. Lokshtanov, D., Marx, D., Saurabh, S., et al.: Lower bounds based on the exponential time hypothesis. Bulletin of EATCS 3(105) (2013)

    Google Scholar 

  10. Michael, R.G., David, S.J.: Computers and intractability: a guide to the theory of np-completeness. WH Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  11. Oum, S., Sæther, S.H., Vatshelle, M.: Faster algorithms for vertex partitioning problems parameterized by clique-width. Theoretical Computer Science 535, 16–24 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B 96(4), 514–528 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sæther, S.H.: Solving hamiltonian cycle by an EPT algorithm for a non-sparse parameter, http://www.arxiv.org

  14. Sæther, S.H., Telle, J.A.: Between treewidth and clique-width. To appear in Proceedings of WG 2014 (2014) Invited to contribute to special section of Algorithmica

    Google Scholar 

  15. Vatshelle, M.: New width parameters of graphs. PhD thesis, The University of Bergen (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sæther, S.H. (2015). Solving Hamiltonian Cycle by an EPT Algorithm for a Non-sparse Parameter. In: Ganguly, S., Krishnamurti, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2015. Lecture Notes in Computer Science, vol 8959. Springer, Cham. https://doi.org/10.1007/978-3-319-14974-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14974-5_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14973-8

  • Online ISBN: 978-3-319-14974-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics