A Spatiotemporal Mereotopology-Based Theory for Qualitative Description in Assembly Design and Sequence Planning

  • Elise Gruhier
  • Frédéric Demoly
  • Said Abboudi
  • Samuel Gomes
Conference paper


This paper presents a novel qualitative theory in the context of assembly-oriented design, which integrates assembly sequence planning in the early product design stages. Based on a brief literature review of current assembly design approaches and mereotopology-based theories, the authors propose to go beyond by defining their own mereotopological theory, therefore enabling the qualitative description of product-process information and knowledge. The proposed mereotopological theory provides a strong basis for describing spatial entities (product parts) changes over time and space by considering a region-based theory linking spatial, temporal and spatiotemporal dimensions. The main objective of such an approach is to provide a product design description by proactively considering its assembly sequence as early as possible in the product development so as to ensure information and knowledge consistency with preliminary information and later introduce a spatiotemporal reasoning layer.


Assembly Sequence Spatial Object Assembly Operation Assembly Line Balance Product Lifecycle Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Demoly F, Deniaud S, Gomes S (2012) Towards an harmonious and integrated management approach for lifecycle planning. In: International conference on advanced production management systems, GreeceGoogle Scholar
  2. 2.
    Kusiak A, Salustri FA (2007) Computational intelligence in product design engineering: review and trends. IEEE Trans Syst Man Cybern Part C Appl Rev 37(5):766CrossRefGoogle Scholar
  3. 3.
    Zeng Y, Gu P (1999) A science-based approach to product design theory Part II: formulation of design requirements and products. Robot Comput Integr Manuf 15(4):341–352CrossRefMathSciNetGoogle Scholar
  4. 4.
    Huang GQ, Lee SW, Mak KL (1999) Web-based product and process data modelling in concurrent design for X. Robot Comput Integr Manuf 15:53–63CrossRefGoogle Scholar
  5. 5.
    Helms RW (2002) Product data management as enabler for concurrent engineering. PhD thesis, Technische Universiteit EindhovenGoogle Scholar
  6. 6.
    Sapuan SM, Osman MR, Nukman Y (2006) State of the art of the concurrent engineering technique in the automotive industry. J Eng Des 17(2):143–157CrossRefGoogle Scholar
  7. 7.
    Sider T (2001) Four dimensionalism: an ontology of persistence and time. Clarendon, OxfordCrossRefGoogle Scholar
  8. 8.
    Zha XF, Du H (2002) A PDES/STEP-based model and system for concurrent integrated design and assembly planning. Comput Aided Des 34(14):1087–1110CrossRefGoogle Scholar
  9. 9.
    Mantripragada R (1998) Assembly oriented design: concepts algorithms and computational tools. PhD thesis, Department of Mechanical Engineering, Massachusetts Institute of TechnologyGoogle Scholar
  10. 10.
    Wang L, Keshavarzmanesh S, Feng H-Y, Buchal RO (2008) Assembly process planning and its future in collaborative manufacturing: a review. Int J Adv Manuf Technol 41(1–2):132–144Google Scholar
  11. 11.
    Kim KY, Yang H, Kim DW (2008) Mereotopological assembly joint information representation for collaborative product design. Robot Comput Integr Manuf 24(6):744–754CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fenves SJ, Foufou S, Bock C, Sriram RD (2008) CPM: A core model for product data. J Comput Inf Sci Eng 5:238–246CrossRefGoogle Scholar
  13. 13.
    Fenves SJ, Foufou S, Bock C, Sriram RD (2008) CPM2: a core model for product data. J Comput Inf Sci Eng 8(1):1–14Google Scholar
  14. 14.
    Sudarsan R, Fenves SJ, Sriram RD, Wang F (2005) A product information modeling framework for product lifecycle management. Comput Aided Des 37(13):1399–1411CrossRefGoogle Scholar
  15. 15.
    Lesniewki S (1929) Fundamentals of a new system of the foundations of mathematics. Fundam Math 14:1–81Google Scholar
  16. 16.
    Demoly F, Matsokis A, Kiritsis D (2012) A mereotopological product relationship description approach for assembly oriented design. Robot Comput Integr Manuf 28(6):681–693CrossRefGoogle Scholar
  17. 17.
    Duntsch I, Wang H, McCloskey S (2001) A relation-algebraic approach to the region connection calculus. Theor Comput Sci 255:63–83CrossRefMathSciNetGoogle Scholar
  18. 18.
    Varzi AC (1998) Basic problems of mereotopology, Formal ontology in information systems. Ios Press, Italy, pp 29–38Google Scholar
  19. 19.
    Salustri FA (2002) Mereotopology for product modeling. A new framework for product modeling based on logic. J Des Res 2:2Google Scholar
  20. 20.
    Salustri FA, Lockledge JC (1999) Towards a formal theory of products including mereology. In: Proceedings of the 12th international conference on engineering design, Munich, pp 1125–1130Google Scholar
  21. 21.
    Bergson H (1923) Creative evolution. H. Holt and Company, New YorkGoogle Scholar
  22. 22.
    Heidegger M (1962) Being and time. Harper & Row, New YorkGoogle Scholar
  23. 23.
    Sartre J-P (1975) Existentialism is a humanism. In: Kauffman W (ed) Existentialism from Dostoevsky to Startre, rev. edn. Meridian/Penguin, New York, pp 345–369Google Scholar
  24. 24.
    Le Moigne J-L (1994) La théorie du système général: théorie de la modélisation. Presses universitaires de France, ParisGoogle Scholar
  25. 25.
    Rodier X, Saligny L, Lefebvre B, Pouliot J (2010) ToToPI a GIS for understanding urban dynamics based on the OH FET model. In: Fricher B, Crawford J, Koler D (eds) Computer application and quantitative methods in archaeology. Granada, pp 337–349Google Scholar
  26. 26.
    Del Mondo G, Stell JG, Claramunt C, Thibaud R (2010) A graph model for spatiotemporal evolution. J Univers Comput Sci 16(11):1452–1477MATHGoogle Scholar
  27. 27.
    Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Knowl Eng 20(3):287–303CrossRefMATHGoogle Scholar
  28. 28.
    Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. Advances in database technology. Springer, Prague, Czech Republic, p 251–268Google Scholar
  29. 29.
    Hawley K (2004) Temporal parts. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Winter 2010 Edn). http://plato.stanford.edu/archives/win2010/entries/temporal-parts/
  30. 30.
    Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843CrossRefMATHGoogle Scholar
  31. 31.
    Demoly F, Yan XT, Eynard B, Rivest L, Gomes S (2011) An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot Comput Integr Manuf 27(1):33–46CrossRefGoogle Scholar
  32. 32.
    Renolen A (1999) Concepts and methods for modelling temporal and spatiotemporal information. Partial fulfilment for the degree “Thesis”, NTNUGoogle Scholar
  33. 33.
    Boothroyd G, Dewhurst P, Knight W (2002) Product design for manufacture and assembly, 2nd edn. Taylor & Francis, Boca Raton, FLGoogle Scholar
  34. 34.
    Bittner T (2001) Rough sets in spatio-temporal data mining. Temporal, spatial, and spatio-temporal data mining. Springer, Berlin Heidelberg, pp 89–104Google Scholar
  35. 35.
    Cottingham J (1996) Meditations on first philosophy with selections from the objections and replies. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Haddad H (2009) Une approche pour supporter l’analyse qualitative des suites d’actions dans un environnement géographique virtuel et dynamique. Thèse de Doctorat, Département d’informatique, Université LavalGoogle Scholar
  37. 37.
    McKinney K, Kim J, Fischer M, Howard C (1996) Interactive 4D-CAD. In: Proceedings of the third congress on computing in civil engineering, Anaheim, pp 383–389Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Elise Gruhier
    • 1
  • Frédéric Demoly
    • 1
  • Said Abboudi
    • 1
  • Samuel Gomes
    • 1
  1. 1.Université de Technologie de Belfort-MontbéliardMontbéliardFrance

Personalised recommendations