Skip to main content

Source-Space Connectivity Analysis Using Imaginary Coherence

  • Chapter
  • First Online:

Abstract

There has been tremendous interest in estimating the functional connectivity of neuronal activities across different brain regions using electromagnetic brain imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although the source has two components when the homogeneous spherical conductor model is used, for arguments in this chapter, we assume that the source vector has three \(x\), \(y\), and \(z\) components.

  2. 2.

    If \( \varvec{ A }^T =- \varvec{ A } \) holds, matrix \( \varvec{ A } \) is skew-symmetric. Since \( \varvec{ \alpha }^T \varvec{ A } \varvec{ \alpha } \) is a scalar, if \( \varvec{ A } \) is skew-symmetric, \( \varvec{ \alpha }^T \varvec{ A } \varvec{ \alpha } =0\).

  3. 3.

    The absolute value of the imaginary coherence is usually computed, because its sign has no meaning in expressing the connectivity.

  4. 4.

    We can apply another method such as the false discovery rate to this multiple comparison problem.

References

  1. J.-M. Schoffelen, J. Gross, Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009)

    Article  PubMed  Google Scholar 

  2. J. Gross, J. Kujara, M. Hämäläinen, L. Timmermann, A. Schnitzler, R. Salmelin, Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. A.G. Guggisberg, S.M. Honma, A.M. Findlay, S.S. Dalal, H.E. Kirsch, M.S. Berger, S.S. Nagarajan, Mapping functional connectivity in patients with brain lesions. Ann. Neurol. 63, 193–203 (2007)

    Article  Google Scholar 

  4. P. Belardinelli, L. Ciancetta, M. Staudt, V. Pizzella, A. Londei, N.B.G.L. Romani, C. Braun, Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions. NeuroImage 37, 1301–1314 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. W.H.R. Miltner, C. Braun, M. Arnold, H. Witte, E. Taub, Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. K. Sekihara, S.S. Nagarajan, Adaptive Spatial Filters for Electromagnetic Brain Imaging (Springer, Berlin, 2008)

    Google Scholar 

  7. K. Sekihara, J.P. Owen, S. Trisno, S.S. Nagarajan, Removal of spurious coherence in MEG source-space coherence analysis. IEEE Trans. Biomed. Eng. 58, 3121–3129 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  8. G. Nolte, O.B.L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004)

    Article  PubMed  Google Scholar 

  9. R.D. Pascual-Marqui, Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition (2007). arXiv preprint arXiv:0711.1455

  10. E.J. Hannan, Multiple Time Series, vol. 38 (Wiley, New York, 2009)

    Google Scholar 

  11. D.R. Brillinger, Time Series: Data Analysis and Theory, vol. 36 (Siam, Philadelphia, 2001)

    Book  Google Scholar 

  12. A. Ewald, L. Marzetti, F. Zappasodi, F.C. Meinecke, G. Nolte, Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage 60(1), 476–488 (2012)

    Article  PubMed  Google Scholar 

  13. F. Shahbazi Avarvand, A. Ewald, G. Nolte, Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers. Comput. Math. Methods Med. 2012, 402341 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  14. A. Bruns, R. Eckhorn, Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int. J. Psychophysiol. 51, 97–116 (2004)

    Article  PubMed  Google Scholar 

  15. K. Sekihara, S.S. Nagarajan, Residual coherence and residual envelope correlation in MEG/EEG source-space connectivity analysis, in Conference of Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 4417–7 (2013)

    Google Scholar 

  16. J.F. Hipp, D.J. Hawellek, M. Corbetta, M. Siegel, A.K. Engel, Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15(6), 884–890 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Phys. D 58, 77–94 (1992)

    Article  Google Scholar 

  18. L. Faes, G.D. Pinna, A. Porta, R. Maestri, G. Nollo, Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans. Biomed. Eng. 51, 1156–1166 (2004)

    Article  PubMed  Google Scholar 

  19. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    Google Scholar 

  20. T.E. Nichols, S. Hayasaka, Controlling the familywise error rate in functional neuroimaging: Aj neural eng. comparative review. Stat. Methods Med. Res. 12, 419–446 (2003)

    Google Scholar 

  21. K.P. Westlake, L.B. Hinkley, M. Bucci, A.G. Guggisberg, A.M. Findlay, R.G. Henry, S.S. Nagarajan, N. Byl, Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 237(1), 160–169 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  22. P.E. Tarapore, A.M. Findlay, S.C. LaHue, H. Lee, S.M. Honma, D. Mizuiri, T.L. Luks, G.T. Manley, S.S. Nagarajan, P. Mukherjee, Resting state magnetoencephalography functional connectivity in traumatic brain injury: clinical article. J. Neurosurg. 118(6), 1306–1316 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  23. L.B. Hinkley, J.P. Owen, M. Fisher, A.M. Findlay, S. Vinogradov, S.S. Nagarajan, Cognitive impairments in schizophrenia as assessed through activation and connectivity measures of magnetoencephalography (MEG) data. Front. Hum. Neurosci. 3, 73 (2009)

    PubMed Central  Google Scholar 

  24. K.G. Ranasinghe, L.B. Hinkley, A.J. Beagle, D. Mizuiri, A.F. Dowling, S.M. Honma, M.M. Finucane, C. Scherling, B.L. Miller, S.S. Nagarajan et al., Regional functional connectivity predicts distinct cognitive impairments in Alzheimers disease spectrum. NeuroImage: Clin. 5, 385–395 (2014)

    Article  Google Scholar 

  25. J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 (1987)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Sekihara .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sekihara, K., Nagarajan, S.S. (2015). Source-Space Connectivity Analysis Using Imaginary Coherence. In: Electromagnetic Brain Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-14947-9_7

Download citation

Publish with us

Policies and ethics