Skip to main content

Dynamic Mapping of the Human Brain by Time-Resolved NIRS Techniques

  • Chapter
  • First Online:
Book cover Advanced Time-Correlated Single Photon Counting Applications

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

Dynamic mapping of the human brain by time-resolved near-infrared-spectroscopy (trNIRS), or functional NIRS (fNIRS), is based on the injection of picosecond or sub-nanosecond laser pulses into the head and the measurement of the pulse shape and the intensity after diffusion through the tissue. By analysing the pulse shape and the intensity of the signals at different detector and source positions and different wavelengths, changes in the oxy- and deoxy-haemoglobin concentration are obtained for extracerebral and intracerebral tissue layers and for different depth in the brain. The technique can by combined with the injection of a bolus of an exogenous absorber. By recording either absorption or fluorescence, the in- and outflow of the absorber in different brain compartments can be monitored. The in- and outflow dynamics reveal differences in the blood flow caused by impaired perfusion or stroke. In this chapter, we describe the technical principle of TCSPC-based fNIRS and the associated data processing techniques. Typical results are shown for the haemodynamic response of the brain on visual-cortex stimulation, and for brain perfusion measurement by ICG bolus injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977)

    Article  CAS  Google Scholar 

  2. A. Villringer, B. Chance, Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)

    Article  CAS  Google Scholar 

  3. J.C. Hebden, A. Gibson, R.M. Yusof, N. Everdell, E.M.C. Hillman, D.T. Delpy, S.R. Arridge, T. Austin, J.H. Meek, J.S. Wyatt, Three-dimensional optical tomography of the premature infant brain. Phys. Med. Biol. 47, 4155–4166 (2002)

    Article  Google Scholar 

  4. F.E.W. Schmidt, M.E. Fry, E.M.C. Hillman, J.C. Hebden, D.T. Delpy, A 32-channel time-resolved instrument for medical optical tomography. Rev. Sci. Instrum. 71, 256–265 (2000)

    Article  CAS  Google Scholar 

  5. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, E.O. Reynolds, Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933, 184–192 (1988)

    Article  CAS  Google Scholar 

  6. P.G. al-Rawi, P. Smielewski, P.J. Kirkpatrick, Preliminary evaluation of a prototype spatially resolved spectrometer. Acta Neurochir. Suppl. 71, 255–257 (1998)

    Google Scholar 

  7. D.M. Hueber, M.A. Franceschini, H.Y. Ma, Q. Zhang, J.R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument. Phys. Med. Biol. 46, 41–62 (2001)

    Article  CAS  Google Scholar 

  8. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)

    Article  CAS  Google Scholar 

  9. B.W. Pogue, M.S. Patterson, Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory. Phys. Med. Biol. 39, 1157–1180 (1994)

    Article  CAS  Google Scholar 

  10. T. Tu, Y. Chen, J. Zhang, X. Intes, B. Chance, Analysis on performance and optimization of frequency-domain near-infrared instruments. J. Biomed. Opt. 7, 643–649 (2002)

    Article  Google Scholar 

  11. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, Experimental test of theoretical models for time-resolved reflectance. Med. Phys. 23, 1625–1633 (1996)

    Article  CAS  Google Scholar 

  12. J.C. Hebden, E.W. Schmidt, M.E. Fry, M. Schweiger, E.M.C. Hillman, D.T. Delpy, Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Opt. Lett. 24, 534–536 (1999)

    Article  CAS  Google Scholar 

  13. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, H. Rinneberg, Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl. Opt. 43, 3037–3047 (2004)

    Article  Google Scholar 

  14. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, Determining changes in NIR absorption using a layered model of the human head. Phys. Med. Biol. 46, 879–896 (2001)

    Article  CAS  Google Scholar 

  15. T. Durduran, G. Yu, M.G. Burnett, J.A. Detre, J.H. Greenberg, J. Wang, C. Zhou, A.G. Yodh, Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt. Lett. 29, 1766–1768 (2004)

    Article  Google Scholar 

  16. M.A. Franceschini, S. Fantini, J.H. Thompson, J.P. Culver, D.A. Boas, Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology 40, 548–560 (2003)

    Article  Google Scholar 

  17. M.A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, S. Fantini, On-line optical imaging of the human brain with 160-ms temporal resolution. Opt. Express 6, 49–57 (2000)

    Article  CAS  Google Scholar 

  18. V. Toronov, A. Webb, J.H. Choi, M. Wolf, L. Safonova, U. Wolf, E. Gratton, Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Opt. Express 9, 417–427 (2001)

    Article  CAS  Google Scholar 

  19. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2010)

    Google Scholar 

  20. W. Becker, A. Bergmann, Timing stability of TCSPC experiments. Proc. SPIE 6372, 637209-1–637209-7 (2006)

    Google Scholar 

  21. W. Becker, The bh TCSPC Handbook, 5th edn. (Becker & Hickl GmbH, Berlin, 2012), electronic version available on www.becker-hickl.com

  22. A. Liebert, H. Wabnitz, M. Möller, R. Macdonald, H. Rinneberg, H. Obrig, J. Steinbrink, A. Villringer, Assessment of cerebral perfusion by time-resolved diffuse NIR-reflectance following injection of a dye-bolus, in Optical Society of America Biomedical Optics Topical Meeting (Miami Beach, Florida, USA, 2004), pp. CD-ROM: SESSION FA, FB 5

    Google Scholar 

  23. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, H. Rinneberg, Intra- and extracerebral changes of hemoglobin concentrations by analysis of moments of distributions of times of flight of photons. Proc. SPIE 5138, 126–130 (2003)

    Article  CAS  Google Scholar 

  24. B.M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, G. Curio, Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy. Neuroimage 39, 979–986 (2008)

    Article  Google Scholar 

  25. T.H. Sander, A. Liebert, M. Burghoff, H. Wabnitz, R. Macdonald, L. Trahms, Cross-correlation Analysis of the Correspondence between Magnetoencephalographic and Near-infrared Cortical Signals. Methods Inf. Med. 46, 164–168 (2007)

    CAS  Google Scholar 

  26. T.H. Sander, A. Liebert, B.M. Mackert, H. Wabnitz, S. Leistner, G. Curio, M. Burghoff, R. Macdonald, L. Trahms, DC-magnetoencephalography and time-resolved near-infrared spectroscopy combined to study neuronal and vascular brain responses. Physiol. Meas. 28, 651–664 (2007)

    Article  CAS  Google Scholar 

  27. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, A. Villringer, Towards noninvasive molecular fluorescence imaging of the human brain. Neurodegener Dis 5, 296–303 (2008)

    Article  CAS  Google Scholar 

  28. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, R. Macdonald, Time-resolved near-infrared spectroscopy and imaging of the adult human brain. Adv. Exp. Med. Biol. 662, 143–148 (2010)

    Article  CAS  Google Scholar 

  29. H. Wabnitz, D.R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sa-wosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, A. Torricelli., Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. J. Biomed. Opt. 19(8), 086010 (2014)

    Article  Google Scholar 

  30. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, A. Pifferi, Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. J. Biomed. Opt. 19(8), 086012 (2014)

    Article  Google Scholar 

  31. M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)

    Article  CAS  Google Scholar 

  32. A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, H. Rinneberg, Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons. Appl. Opt. 42, 5785–5792 (2003)

    Article  CAS  Google Scholar 

  33. V. Ntziachristos, B. Chance, Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy. Med. Phys. 28, 1115–1124 (2001)

    Article  CAS  Google Scholar 

  34. S. Carraresi, T.S. Shatir, F. Martelli, G. Zaccanti, Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration. Appl. Opt. 40(25), 4622–4632 (2001)

    Article  CAS  Google Scholar 

  35. A. Liebert, H. Wabnitz, C. Elster, Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model. J. Biomed. Opt. 17, 057005 (2012)

    Article  Google Scholar 

  36. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Bruhl, R. Macdonald, Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement. Biomed. Opt. Express 5, 1465–1482 (2014)

    Article  Google Scholar 

  37. A. Puszka, L. Herve, A. Planat-Chretien, A. Koenig, J. Derouard, J.M. Dinten, Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion. Biomed. Opt. Express 4, 569–583 (2013)

    Article  Google Scholar 

  38. L. Zucchelli, D. Contini, R. Re, A. Torricelli, L. Spinelli, Method for the discrimination of superficial and deep absorption variations by time domain fNIRS. Biomed. Opt. Express 4, 2893–2910 (2013)

    Article  Google Scholar 

  39. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, R. Maniewski, Time-resolved optical imager for assessment of cerebral oxygenation. J. Biomed. Opt. 12, 034019 (2007)

    Article  Google Scholar 

  40. A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media. J. Biomed. Opt. 8, 512–516 (2003)

    Article  Google Scholar 

  41. V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, R. Cubeddu, Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study. J. Biomed. Opt. 10, 11012 (2005)

    Article  Google Scholar 

  42. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, R. Cubeddu, Multi-channel time-resolved system for functional near infrared spectroscopy. Opt. Express 14, 5418–5432 (2006)

    Article  Google Scholar 

  43. M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A.M. Bianchi, S. Cerutti, R. Cubeddu, A. Torricelli, Effect of prolonged stimulation on cerebral hemodynamic: a time-resolved fNIRS study. Med. Phys. 36, 4103–4114 (2009)

    Article  CAS  Google Scholar 

  44. E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A.M. Bianchi, A. Torricelli, Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. J. Biomed. Opt. 17, 056005 (2012)

    Article  Google Scholar 

  45. A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, R. Cubeddu, Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy. Opto-Electron. Rev. 16, 131–135 (2008)

    Article  CAS  Google Scholar 

  46. R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, A. Torricelli, A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing. Rev. Sci. Instrum. 81, 113101 (2010)

    Article  Google Scholar 

  47. F. Aletti, R. Re, V. Pace, D. Contini, E. Molteni, S. Cerutti, A. Maria Bianchi, A. Torricelli, L. Spinelli, R. Cubeddu, G. Baselli, Deep and surface hemodynamic signal from functional time resolved transcranial near infrared spectroscopy compared to skin flowmotion. Comput. Biol. Med. 42, 282–289 (2012)

    Article  Google Scholar 

  48. T. Desmettre, J.M. Devoisselle, S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv. Ophthalmol. 45, 15–27 (2000)

    Article  CAS  Google Scholar 

  49. S. Mordon, J.M. Devoisselle, S. Soulie-Begu, T. Desmettre, Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc. Res. 55, 146–152 (1998)

    Article  CAS  Google Scholar 

  50. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, A. Liebert, Wavelength-resolved measurements of fluorescence lifetime of indocyanine green. J. Biomed. Opt. 16, 067010 (2011)

    Article  Google Scholar 

  51. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, H. Obrig, Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. Neuroimage 24, 426–435 (2005)

    Article  CAS  Google Scholar 

  52. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J.B. Fiebach, R. Macdonald, H. Obrig, Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke. J. Biomed. Opt. 15, 061708 (2010)

    Article  Google Scholar 

  53. O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, H. Obrig, Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry. Biocybern. Biomed. Eng 32, 3–16 (2012)

    Article  Google Scholar 

  54. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Bruhl, B. Ittermann, A.M. Jacobs, I. Tachtsidis, The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. NeuroImage 61, 70–81 (2012)

    Article  Google Scholar 

  55. M. Diop, K.M. Tichauer, J.T. Elliott, M. Migueis, T.Y. Lee, K. St Lawrence, Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets. J. Biomed. Opt. 15, 057004 (2010)

    Article  Google Scholar 

  56. J. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. Morrison, T.-Y. Lee, A. Liebert, K. St. Lawrence, Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs. Biomed. Opt. Express, accepted for publication (2012)

    Google Scholar 

  57. J.T. Elliott, M. Diop, K.M. Tichauer, T.Y. Lee, K. St Lawrence, Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy. J. Biomed. Opt. 15, 037014 (2010)

    Article  Google Scholar 

  58. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, R. Maniewski, Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation. J. Biomed. Opt. 16, 046011 (2011)

    Article  Google Scholar 

  59. D. Milej, M. Kacprzak, N. Zolek, P. Sawosz, A. Gerega, R. Maniewski, A. Liebert, Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG. Opto-Electron. Rev. 18, 208–213 (2010)

    Article  CAS  Google Scholar 

  60. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, R. Maniewski, Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study. Opto-Electron. Rev. 18, 37–47 (2010)

    Article  CAS  Google Scholar 

  61. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, J. Steinbrink, Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31, 600–608 (2006)

    Article  CAS  Google Scholar 

  62. D. Milej, A. Gerega, M. Kacprzak, W. Weigl, R. Maniewski, A. Liebert, Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion in the human brain. Opto-Electron. Rev. 22(1), 55–67 (2013)

    Google Scholar 

  63. D. Milej, A. Gerega, N. Zolek, W. Weigl, M. Kacprzak, P. Sawosz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, R. Maniewski, A. Liebert, Time-resolved detection of fluorescent light during inflow of ICG to the brain-a methodological study. Phys. Med. Biol. 57, 6725–6742 (2012)

    Article  Google Scholar 

  64. A. Liebert, H. Wabnitz, N. Zolek, R. Macdonald, Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media. Opt. Express 16, 13188–13202 (2008)

    Article  CAS  Google Scholar 

  65. D. Milej, A. Gerega, H. Wabnitz, A. Liebert, A Monte Carlo study of fluorescence generation probability in a two-layered tissue model. Phys. Med. Biol. 59, 1407–1424 (2014)

    Article  Google Scholar 

  66. A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, J. Steinbrink, Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements. J. Biomed. Opt. 17, 057003 (2012)

    Article  Google Scholar 

  67. A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, A. Liebert, Multi-wavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain. J. Biomed. Opt. 17, 087001 (2012)

    Article  Google Scholar 

  68. W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, A. Liebert, Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method. Neuroimage 85, 555–565 (2014)

    Google Scholar 

  69. J. Selb, D.K. Joseph, D.A. Boas, Time-gated optical system for depth-resolved functional brain imaging. J. Biomed. Opt. 11, 044008 (2006)

    Article  Google Scholar 

  70. J. Selb, J.J. Stott, M.A. Franceschini, A.G. Sorensen, D.A. Boas, Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation. J. Biomed. Opt. 10, 11013 (2005)

    Article  Google Scholar 

  71. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, R. Cubeddu, Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera. J. Phys. D Appl. Phys. 36, 1675–1681 (2003)

    Article  Google Scholar 

  72. I. Sase, A. Takatsuki, J. Seki, T. Yanagida, A. Seiyama, Noncontact backscatter-mode near-infrared time-resolved imaging system: Preliminary study for functional brain mapping. J. Biomed. Opt. 11, 054006 (2006)

    Article  Google Scholar 

  73. P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, A. Liebert, Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies. J. Biomed. Opt. 15, 066025 (2010)

    Article  Google Scholar 

  74. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, A. Liebert, Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimic local changes in oxygenation of the brain tissue. Opto-Electron. Rev. 20, 309–314 (2012)

    Article  Google Scholar 

  75. M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A.D. Mora, A. Tosi, H. Wabnitz, R. Macdonald, Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomed. Opt. Express 4, 2257–2268 (2013)

    Article  CAS  Google Scholar 

  76. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A.D. Mora, A. Tosi, F. Zappa, R. Macdonald, Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. Opt. Express 20, 283–290 (2012)

    Article  CAS  Google Scholar 

  77. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, R. Maniewski, Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery. J. Biomed. Opt. 17, 016002 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Liebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liebert, A. et al. (2015). Dynamic Mapping of the Human Brain by Time-Resolved NIRS Techniques. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_17

Download citation

Publish with us

Policies and ethics