Skip to main content

Heat-Induced Changes in Milk

  • Chapter

Abstract

In modern dairy technology, milk is almost always subjected to a heat treatment; typical examples are: thermization (65 ˚C × 15 sec), low temperature – long time pasteurization (65 ˚C × 30 min), high temperature – short time (72 ˚C × 15 sec) pasteurization, ultra-high temperature sterilization (140 ˚C × 5 sec), in-container sterilization (112 ˚C × 15 min). The objectives of heat treatment, include: killing heat-sensitive spoilage bacteria (therminization), killing pathogenic bacteria (pasteurization), killing all bacteria, including spores (sterilization), inactivation of enzymes and increasing heat stability. Milk is a very heat – stable system but some chemical and physico-chemical changes do occur in milk on heating. These changes include: damage to the creaming properties, non-enzymatic (Maillard) browning, degradation of lactose to lactulose and acids, denaturation of whey proteins and after severe heat treatment, dephosphorylation and hydrolysis of the caseins and eventually heat-induced coagulation. The principal heat-induced changes in milk are described in this chapter.

Keywords

  • Conjugated Linoleic Acid
  • Whey Protein
  • Maillard Reaction
  • Heat Stability
  • Casein Micelle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14892-2_9
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-14892-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11
Fig. 9.12
Fig. 9.13
Fig. 9.14
Fig. 9.15
Fig. 9.16
Fig. 9.17
Fig. 9.18
Fig. 9.19
Fig. 9.20
Fig. 9.21

References

  • Bauman, D. E., & Lock, A. L. (2006). Conjugated linoleic acid: Biosynthesis and nutritional significance. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry (Lipids 2nd ed., Vol. 2, pp. 93–136). New York, NY: Springer.

    Google Scholar 

  • Cadwallader, K. K., & Singh, T. K. (2009). Flavour and off-flavour in milk and dairy products. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry (Lactose, water, salts and minor constitutes 3rd ed., Vol. 3, pp. 631–690). New York, NY: Springer.

    CrossRef  Google Scholar 

  • Driessen, F. M. (1989). Inactivation of lipases and proteinases (indigenous and bacterial). In P. F. Fox (Ed.), Heat-induced changes in milk (Bulletin, Vol. 238, pp. 71–93). Brussels: International Dairy Federation.

    Google Scholar 

  • Erbersdobler, H. F., & Dehn-Müller, B. (1989). Formation of early Maillard products during UHT treatment of milk. In P. F. Fox (Ed.), Heat-induced changes in milk (Bulletin, Vol. 238, pp. 62–67). Brussels: International Dairy Federation.

    Google Scholar 

  • Fox, P. F. (1981). Heat-induced changes in milk preceding coagulation. Journal of Dairy Science, 64, 2127–2137.

    CAS  CrossRef  Google Scholar 

  • Fox, P. F. (1982a). Heat-induced coagulation of milk. In P. F. Fox (Ed.), Developments in dairy chemistry (Proteins, Vol. 1, pp. 189–228). London, UK: Applied Science.

    Google Scholar 

  • Fox, P. F., & Morrissey, P. A. (1977). Reviews on the progress of dairy science: The heat stability of milk. Journal of Dairy Research, 44, 627–646.

    CAS  CrossRef  Google Scholar 

  • Gould, I. A. (1945). Lactic acid in dairy products. III. The effect of heat on total acid and lactic acid production and on lactose destruction. Journal of Dairy Science, 28, 367–377.

    CAS  CrossRef  Google Scholar 

  • Ha, Y. L., Grimm, N. K., & Pariza, M. W. (1989). Newly recognized anticarcinogenic fatty acids. Identification and quantification in natural and processed cheeses. Journal of Agricultural and Food Chemistry, 37, 75–81.

    CAS  CrossRef  Google Scholar 

  • Harwalkar, V. R. (1992). Age gelation of sterilized milks. In P. F. Fox (Ed.), Advanced dairy chemistry (Proteins 2nd ed., Vol. 1, pp. 691–734). London, UK: Elsevier Applied Science.

    Google Scholar 

  • Huppertz, T. (2015). Heat stability of milk. In P. L. H. McSweeney & J. A. O’Mahony (Eds.), Advanced dairy chemistry (Proteins 4th ed., Vol. 1) in press. New York, NY: Springer.

    Google Scholar 

  • Jenness, R., & Patton, S. (1959). Principles of dairy chemistry. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Liang, D., & Hartel, R. W. (2004). Effects of milk powders in chocolate. Journal of Dairy Science, 87, 20–31.

    CAS  CrossRef  Google Scholar 

  • Lyster, R. L. J. (1970). The denaturation of α-lactalbumin and β-lactoglobulin in heated milk. Journal of Dairy Research, 37, 233–243.

    CAS  CrossRef  Google Scholar 

  • Manning, D. J., & Nursten, H. E. (1985). Flavour of milk and milk products. In P. F. Fox (Ed.), Developments in dairy chemistry (Lactose and minor constituents, Vol. 3, pp. 217–238). London, UK: Elsevier Applied Science.

    CrossRef  Google Scholar 

  • McCrae, C. H., & Muir, D. D. (1995). Heat stability of milk. In P. F. Fox (Ed.), Heat-induced changes in milk (Special Issue 2nd ed., 9501, pp. 206–230). Brussels: International Dairy Federation.

    Google Scholar 

  • McKellar, R. C. (Ed.). (1989). Enzymes of psychrotrophs in raw food. Boca Raton, FL: CRC Press.

    Google Scholar 

  • McSweeney, P. L. H., Nursten, H. E., & Urbach, G. (1997). Flavour and off-flavour in milk and dairy products. In P. F. Fox (Ed.), Advanced dairy chemistry (Lactose, water, salts and vitamins 3rd ed., Vol. 3, pp. 406–468). London, UK: Chapman & Hall.

    Google Scholar 

  • Mounsey, J. S., O’Kennedy, B. T., & Kelly, P. M. (2005). Influence of transglutaminase treatment on properties of micellar casein and products made therefrom. Le Lait, 85, 405–418.

    CAS  CrossRef  Google Scholar 

  • Mulvihill, D. M., & Donovan, M. (1987). Whey proteins and their thermal denaturation—A review. Irish Journal of Food Science and Technology, 11, 43–75.

    CAS  Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (1999). Heat-induced changes in the calcium sensitivity of casein. International Dairy Journal, 9, 839–847.

    CrossRef  Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (2000). The two-stage coagulation of milk proteins in the minimum of the heat coagulation time-pH profile of milk: Effect of casein micelle size. Journal of Dairy Science, 83, 378–386.

    CrossRef  Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products. International Dairy Journal, 11, 103–120.

    CrossRef  Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (2003). Heat-induced coagulation of milk. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry (Part B, Proteins 3rd ed., Vol. 1, pp. 879–945). New York, NY: Springer.

    Google Scholar 

  • O’Sullivan, M. M., Kelly, A. L., & Fox, P. F. (2002). Effect of transglutaminase on the heat stability of milk: A possible mechanism. Journal of Dairy Science, 85, 1–7.

    CrossRef  Google Scholar 

  • Parodi, P. W. (2006). Nutritional significance of milk lipids. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry (Lipids 2nd ed., Vol. 2, pp. 136, 601–639). New York, NY: Springer.

    Google Scholar 

  • Pyne, G. T. (1958). The heat coagulation of milk. II. Variations in the sensitivity of caseins to calcium ions. Journal of Dairy Research, 25, 467–474.

    CAS  CrossRef  Google Scholar 

  • Rose, D. (1963). Heat stability of bovine milk: A review. Dairy Science Abstracts, 25, 45–52.

    Google Scholar 

  • Singh, H., & Creamer, L. K. (1992). Heat stability of milk. In P. F. Fox (Ed.), Advanced dairy chemistry (Proteins 2nd ed., Vol. 1, pp. 621–656). London, UK: Elsevier Applied Science.

    Google Scholar 

  • Singh, H., Creamer, L. K., & Newstead, D. F. (1995). Heat stability of concentrated milk. In P. F. Fox (Ed.), Heat-induced changes in milk (Special Issue 2nd ed., Vol. 9501, pp. 256–278). Brussels: International Dairy Federation.

    Google Scholar 

  • Singh, H., & Fox, P. F. (1987). Heat stability of milk: Role of β-lactoglobulin in the pH-dependent dissociation of κ-casein. Journal of Dairy Research, 54, 509–521.

    CAS  CrossRef  Google Scholar 

  • Stepaniak, L., Fox, P. F., & Daly, C. (1982). Isolation and general characterization of a heat-stable proteinase from Pseudomonas fluorescens AFT 36. Biochimica et Biophysica Acta, 717, 376–383.

    CAS  CrossRef  Google Scholar 

  • Sweetsur, A. W. M., & Muir, D. D. (1980). Effect of concentration by ultrafiltration on the heat stability of skim milk. Journal of Dairy Research, 47, 327–335.

    CrossRef  Google Scholar 

  • Sweetsur, A. W. M., & Muir, D. D. (1983). Effect of homogenization on the heat stability of milk. Journal of Dairy Research, 50, 291–300.

    CAS  CrossRef  Google Scholar 

  • Sweetsur, A. W. M., & White, J. C. D. (1975). Studies on the heat stability of milk proteins. III. Effect of heat-induced acidity in milk. Journal of Dairy Research, 42, 73–88.

    CAS  CrossRef  Google Scholar 

  • Tan-Kintia, R. H., & Fox, P. F. (1996). Effect of the enzymatic hydrolysis of lactose on the heat stability of milk or reconstituted milk. Netherlands Milk and Dairy Journal, 50, 267–277.

    CAS  Google Scholar 

  • Walstra, P., & Jenness, R. (1984a). Dairy chemistry and physics. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Webb, B. H., & Johnson, A. H. (1965). Fundamentals of dairy chemistry. Westport, CT: AVI Publishing Company.

    Google Scholar 

Suggested Reading

  • Fox, P. F. (Ed.). (1982b). Developments in dairy chemistry (Proteins, Vol. 1). London, UK: Applied Science.

    Google Scholar 

  • Fox, P. F. (Ed.). (1989). Heat-induced changes in milk (Bulletin, Vol. 238). Brussels: International Dairy Federation.

    Google Scholar 

  • Fox, P. F. (Ed.). (1995). Heat-induced changes in milk (Special Issue 2nd ed., Vol. 9501). Brussels: International Dairy Federation.

    Google Scholar 

  • Walstra, P., & Jenness, R. (1984b). Dairy chemistry and physics. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Wong, N. P. (Ed.). (1980). Fundamentals of dairy chemistry (3rd ed.). Westport, CT: The AVI Publishing Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., O’Mahony, J.A. (2015). Heat-Induced Changes in Milk. In: Dairy Chemistry and Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-14892-2_9

Download citation