Skip to main content

Theoretical Postulation of the Embryological Basis of the Virgin Birth and Role of Embryonic Stem Cells Localized Out of the Embryo

  • Chapter
  • First Online:
  • 1845 Accesses

Abstract

A scenario is presented here for the miraculous event of Virgin birth. In case of a chimera of 46,XX/46,XY type resulting from the fusion of two embryos of different sex types, both ovary and testis develop in the body. It is well known that in chimera XX cells tend to gather on the left side while XY cells on the right; therefore, an ovary develops at the left side with an oviduct and a testis develops at the right side of the abdominal cavity with no duct. Both gonads are functional and produce oocyte and spermatozoa respectively after puberty. At the time of ovulation, estrogens leads to a negative pressure in the left oviduct and this vacuum effect helps oocyte and sperms to be picked-up into the tube, taking both types of gametes to the fertilization site in the left oviduct. Because of the higher temperature of the oocyte at the left ovary, fertilization occurs with a Y-bearing sperm to give rise to a XY male embryo which becomes miraculously Jesus. Pluripotent embryonic stem cells can produce any of the cell types of the body, although not the extraembryonic cells that go on to form structures such as the placenta. A group of pluripotent embryonic stem cells reside in the extraembryonic tissues such as allantois and yolk sac in the early developmental stages. The cells that enter the allantois do not return to the embryo, whereas other cells migrate in the embryo to reach the developing gonads. By not migrating into the embryo and staying in the allantois arrests the normal program of change of their character with time and so enables these stem cells to live without differentiating. It seems that in the early developmental stages, a group of pluripotent embryonic stem cells each of which can give rise to an embryo are set aside out of the embryo for a possible use in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moore KL, Persaud TVN. The developing human, clinically oriented embryology. 7th ed. Philadelphia: Saunders; 2003. p. 16.

    Google Scholar 

  2. Inoue H, Nomura M, Yanase T, Ichino I, Goto K, Ikuyama S, Takayanagi R, Nawata H. A rare case of 46, XX true hermaphroditism with hidden mosaicism with sex-determining region Y chromosome-bearing cells in the gonads. Intern Med. 1998;37:467–71.

    Article  CAS  PubMed  Google Scholar 

  3. Behrman RE, Kliegman RM, Jenson HB. Nelson textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 1945.

    Google Scholar 

  4. Krob G, Braun A, Kuhnle U. True hermaphrodite: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr. 1994;153:2–10.

    Article  CAS  PubMed  Google Scholar 

  5. van Niekerk WA, Retief AE. The gonads of human true hermaphrodites. Hum Genet. 1981;58:117–22.

    Article  PubMed  Google Scholar 

  6. Fischer HW, Lischer CE, Byars LT. True hermaphroditism. Ann Surg. 1952;136:864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aaronson IA. True hermaphroditism: a review of 41 cases with observations on testicular histology and function. Br J Urol. 1985;57:775–9.

    Article  CAS  PubMed  Google Scholar 

  8. Strachan T, Read AP. Human molecular genetics. 3rd ed. New York: Taylor & Francis; 2004. p. 110.

    Google Scholar 

  9. Malan V, Vekemans M, Turleau C. Chimera and other fertilization errors. Clin Genet. 2006;70:363–73.

    Article  CAS  PubMed  Google Scholar 

  10. Schultz BA, Roberts S, Rodgers A, Ataya K. Pregnancy in true hermaphrodites and all male offspring to date. Obstet Gynecol. 2009;113:534–6.

    Article  PubMed  Google Scholar 

  11. van Niekerk WA. True hermaphroditism: an analytic review with a report of 3 new cases. Am J Obstet Gynecol. 1976;126:890–907.

    Article  PubMed  Google Scholar 

  12. Haqq CM, Donahoe PK. Regulation of sexual dimorphism in mammals. Physiol Rev. 1998;78:1–33.

    CAS  PubMed  Google Scholar 

  13. Minowada S, Fukutani K, Hara M, Shinohara M, Kamioka J, Isurugi K, Niijima T. Childbirth in true hermaphrodites. Eur Urol. 1984;10:414–5.

    CAS  PubMed  Google Scholar 

  14. Uehara S, Nata M, Nagae M, Sagisaka K, Okamura K, Yajima A. Molecular biologic analyses of tetragametic chimerism in a true hermaphrodite with 46, XX/46, XY. Fertil Steril. 1995;63:189–92.

    Article  CAS  PubMed  Google Scholar 

  15. Green AJ, Barton DE, Jenks P, Pearson J, Yates JR. Chimaerism shown by cytogenetics and DNA polymorphism analysis. J Med Genet. 1994;31:816–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salas-Cortes L, Jaubert F, Nihoul-Fekete C, Brauner R, Rosemblatt M, Fellous M. SRY protein is expressed in ovotestis and streak gonads from human sex-reversal. Cytogenet Cell Genet. 2000;91:212–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hadjiathanasiou CG, Brauner R, Lortat-Jacob S, Nivot S, Jaubert F, Fellous M, Nihoul-Fekete C, Rappaport R. True hermaphroditism: genetic variants and clinical management. J Pediatr. 1994;125:738–44.

    Article  CAS  PubMed  Google Scholar 

  18. Giltay JC, Brunt T, Beemer FA, Wit JM, van Amstel HK, Pearson PL, Wijmenga C. Polymorphic detection of a parthenogenetic maternal and double paternal contribution to a 46, XX/46, XY hermaphrodite. Am J Hum Genet. 1998;62:937–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hawkins JR, Taylor A, Berta P, Levilliers J, Van der Auwera B, Goodfellow PN. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum Genet. 1992;88:471–4.

    Article  CAS  PubMed  Google Scholar 

  20. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351:117–21.

    Article  CAS  PubMed  Google Scholar 

  21. Meyers-Wallen VN, Donahoe PK, Manganaro T, Patterson DF. Müllerian inhibiting substance in sex-reversed dogs. Biol Reprod. 1987;37:1015–22.

    Article  CAS  PubMed  Google Scholar 

  22. Sommer MM, Meyers-Wallen VN. XX true hermaphroditism in a dog. J Am Vet Med Assoc. 1991;198:435–8.

    CAS  PubMed  Google Scholar 

  23. Andersen CY, Byskov AG, Grinsted J. Growth pattern of the sex ducts in foetal mouse hermaphrodites. J Embryol Exp Morphol. 1983;73:59–68.

    CAS  PubMed  Google Scholar 

  24. McComb PF, Coppo ME. The transperitoneal migration of ova in the rabbit. Acta Eur Fertil. 1986;17:5–7.

    CAS  PubMed  Google Scholar 

  25. Pettersson A, Larsson B, Einarsson E. The effect of unilateral ovariectomy on intraluminal pressure in the porcine oviductal isthmus. Zentralbl Veterinarmed A. 1991;38:481–4.

    Article  CAS  PubMed  Google Scholar 

  26. Mwanza AM, Englund P, Kindahl H, Lundeheim N, Einarsson S. Effects of post-ovulatory food deprivation on the hormonal profiles, activity of the oviduct and ova transport in sows. Anim Reprod Sci. 2000;59:185–99.

    Article  CAS  PubMed  Google Scholar 

  27. Pettersson A, Einarsson S, Kindahl H. Intraluminal pressure variations in the isthmus of the porcine oviduct after intrauterine insemination with saline, oestrogen solution or boar seminal plasma. Acta Vet Scand. 1993;34:109–16.

    CAS  PubMed  Google Scholar 

  28. Mwanza AM, Englund P, Pettersson A, Einarsson S. Oviductal isthmic motility patterns as monitored by polyview in unrestrained sows around ovulation. Anim Reprod Sci. 2000;62:309–20.

    Article  CAS  PubMed  Google Scholar 

  29. Ombelet W, Deblaere K, Grieten M, Verswijvel G, Nijs M, Hinoul P, de Jonge E. Intrauterine pregnancy following transperitoneal oocyte and/or sperm migration in a woman with an ectopic (undescended) ovary. Reprod Biomed Online. 2003;7:110–3.

    Article  PubMed  Google Scholar 

  30. Motta T, Marchini M, Fadin M, D’Alberton A, Candiani GB. Successive transperitoneal migration of ova in a woman with extensive pelvic adhesions. Fertil Steril. 1993;59:1311–2.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Nun I, Fejgin M, Gruber A, Ben-Aderet N. Transperitoneal ovum migration in women with unilateral congenital ovarian absence. Acta Obstet Gynecol Scand. 1988;67:665–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wheeler JM, Dodson MG. Transperitoneal migration of the ovum. A case report. J Reprod Med. 1985;30:895–8.

    CAS  PubMed  Google Scholar 

  33. Gabriel B, Fischer DC, Sergius G. Unruptured pregnancy in a non-communicating heterotopic right fallopian tube associated with left unicornuate uterus: evidence for transperitoneal sperm and oocyte migration. Acta Obstet Gynecol Scand. 2002;81:91–2.

    PubMed  Google Scholar 

  34. Kamrava MM, Seibel MM, Thompson IE, Berger MJ, McArdle CR. Intrauterine pregnancy following transperitoneal migration of the ovum. Obstet Gynecol. 1982;60:391–3.

    CAS  PubMed  Google Scholar 

  35. Ansari AH, Miller ES. Sperm transmigration as a cause of ectopic pregnancy. Arch Androl. 1994;32:1–4.

    Article  CAS  PubMed  Google Scholar 

  36. Williamson HO, Phansey SA, Mathur RS. True hermaphroditism with term vaginal delivery and a review. Am J Obstet Gynecol. 1981;141:262–5.

    CAS  PubMed  Google Scholar 

  37. Tanaka Y, Fujiwara K, Yamauchi H, Mikami Y, Kohno I. Pregnancy in a woman with a Y chromosome after removal of an ovarian dysgerminoma. Gynecol Oncol. 2000;79:519–21.

    Article  CAS  PubMed  Google Scholar 

  38. Talerman A, Verp MS, Senekjian E, Gilewski T, Vogelzang N. True hermaphrodite with bilateral ovotestis, bilateral gonadoblastomas and dysgerminomas, 46, XX/46, XY karyotype, and a successful pregnancy. Cancer. 1990;66:2668–72.

    Article  CAS  PubMed  Google Scholar 

  39. Verp MS, Harrison H, Ober C, Oliveri D, Amarose AP, Lindgren V, Talerman A. Chimerism as the etiology of a 46XX/46XY fertile true hermaphrodite. Fertil Steril. 1992;57:346–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tiltman AJ, Sweerts M. Multiparity in a covert true hermaphrodite. Obstet Gynecol. 1982;60:752–4.

    CAS  PubMed  Google Scholar 

  41. Mayou BJ, Armon P, Lindenbaum RH. Pregnancy and childbirth in a true hermaphrodite following reconstructive surgery. Br J Obstet Gynaecol. 1978;85:314–6.

    Article  CAS  PubMed  Google Scholar 

  42. Tegenkamp TR, Brazzel JW, Tegenkamp I, Labidi F. Pregnancy without benefit of reconstructive surgery in a bisexually active true hermaphrodite. Am J Obstet Gynecol. 1979;135:427–8.

    Article  CAS  PubMed  Google Scholar 

  43. Schoenhaus SA, Lentz SE, Saber P, Munro MG, Kivnick S. Pregnancy in a hermaphrodite with a male-predominant mosaic karyotype. Fertil Steril. 2008;90:E7–10.

    Article  PubMed  Google Scholar 

  44. Robert KA, Thompson MB. Viviparity and temperature-dependent sex determination. Sex Dev. 2010;4:119–28.

    Article  CAS  PubMed  Google Scholar 

  45. Pieau C, Dorizzi M. Oestrogens and temperature-dependent sex determination in reptiles: all is in the gonads. J Endocrinol. 2004;181:367–77.

    Article  CAS  PubMed  Google Scholar 

  46. McLachlan JC, Storey H. Hot male: can sex in humans be modified by temperature? J Theor Biol. 2003;222:71–2.

    Article  PubMed  Google Scholar 

  47. Hunter RH. Temperature gradients in female reproductive tissues. Reprod Biomed Online. 2012;24:377–80.

    Article  CAS  PubMed  Google Scholar 

  48. Standring S. Abdomen and pelvis. In: Gray’s anatomy. 39th edn. Philadelphia: Elsevier, Churchill Livingstone; 2005, p. 66–109.

    Google Scholar 

  49. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. In: Gibbs S, editor. Molecular biology of the cell. New York: Taylor & Francis; 2002. p. 1243–6.

    Google Scholar 

  50. Frankenhuis MT, Smith-Buijs CM, de Boer LE, Kloosterboer JW. A case of combined hermaphroditism and autofertilisation in a domestic rabbit. Vet Rec. 1990;126:598–9.

    CAS  PubMed  Google Scholar 

  51. Kanamori A, Yamamura A, Koshiba S, Lee JS, Orlando EF, Hori H. Methyltestosterone efficiently induces male development in the self-fertilizing hermaphrodite fish, Kryptolebias marmoratus. Genesis. 2006;44:495–503.

    Article  CAS  PubMed  Google Scholar 

  52. Mackiewicz M, Tatarenkov A, Taylor DS, Turner BJ, Avise JC. Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite. Proc Natl Acad Sci U S A. 2006;103:9924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qur’an. 3–37: development of Mary as a beautiful plant; 66–12: Mary is called “Him”.

    Google Scholar 

  54. Irmak MK. Self-fertilization in human: having a male embryo without a father. Med Hypotheses. 2010;75:448–51.

    Article  PubMed  Google Scholar 

  55. Irmak MK. Embryological basis of the virgin birth of Jesus. J Exp Integr Med. 2014;4:143–6.

    Article  Google Scholar 

  56. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Sexual reproduction: meiosis, germ cells, and fertilization. In: Gibbs S, editor. Molecular biology of the cell. New York: Taylor & Francis Group; 2007. p. 1282–304.

    Google Scholar 

  57. Matsui Y. Developmental fates of the mouse germ cell line. Int J Dev Biol. 1998;42:1037–42.

    CAS  PubMed  Google Scholar 

  58. Hogan BL, Blessing M, Winnier GE, Suzuki N, Jones CM. Growth factors in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Dev Suppl. 1994;120:53–60.

    Google Scholar 

  59. Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol. 1979;52:141–52.

    CAS  PubMed  Google Scholar 

  60. Carlson BM. Patten’s foundations of embryology. New York: McGraw-Hill; 1996. p. 75.

    Google Scholar 

  61. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994;182:68–84.

    CAS  PubMed  Google Scholar 

  62. Anderson R, Copeland TK, Schöler H, Heasman J, Wylie C. The onset of germ cell migration in the mouse embryo. Mech Dev. 2000;91:61–8.

    Article  CAS  PubMed  Google Scholar 

  63. Standring S. Implantation, placentation, pregnancy and parturition. In: Gray’s anatomy. Philadelphia: Churchill Livingstone; 2008. p. 1250–1355.

    Google Scholar 

  64. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fujiwara T, Dunn NR, Hogan BL. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A. 2001;98:13739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis. 2007;45:237–58.

    Article  CAS  PubMed  Google Scholar 

  67. Anderson R, Fässler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development. 1999;126:1655–64.

    CAS  PubMed  Google Scholar 

  68. Downs KM, Harmann C. Developmental potency of the murine allantois. Development. 1997;124:2769–80.

    CAS  PubMed  Google Scholar 

  69. Gomperts M, Garcia-Castro M, Wylie C, Heasman J. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development. 1994;120:135–41.

    CAS  PubMed  Google Scholar 

  70. Romero-Rojas AE, Messa-Botero OA, Melo-Uribe MA, Díaz-Pérez JA, Chinchilla-Olaya SI. Primary yolk sac tumor of the urachus. Int J Surg Pathol. 2011;19:658–61.

    Article  PubMed  Google Scholar 

  71. Irmak MK. Why are some of embryonic stem cells localized out of the embryo? J Exp Integr Med. 2012;2:373–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kemal Irmak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Irmak, M.K. (2016). Theoretical Postulation of the Embryological Basis of the Virgin Birth and Role of Embryonic Stem Cells Localized Out of the Embryo. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics