The Liverpool Years: From Professor to Professor Emeritus

Part of the Springer Biographies book series (SPRINGERBIOGS)


In 1963, Fröhlich (Fig. 6.1) returned to superconductivity, this time in connection with the then recent finding that in the case of transition metals characterised by incompletely filled d-bands, the isotope effect is much weaker than the M−½ dependence that characterises non-transition metals, and, in some cases, is absent altogether (Matthias et al. 1963). He pointed out that this is actually to be expected if the energy bands associated with the incompletely filled inner shells are sufficiently narrow. For the M−½ dependence of Tc arises from the assumption that only a small fraction (~ħωD/EF) of conduction electrons avail themselves of the attractive interaction, where ωD is the Debye frequency. When the band-width is itself of the order of ħωD, however, nearly all the electrons partake in the interaction, and the isotope effect is lost [F119].


Attractive Interaction Reduce Density Matrice Coherent Mode Condensate Density Coherent Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. Allcock, G.R., Kuper, C.G.: Rotons in quantum hydrodynamics. Proc. Roy. Soc. A 231, 226–243 (1955)MathSciNetCrossRefADSGoogle Scholar
  2. Arani, R., Bono, I., Del Giudice, E., Preparata, G.: QED coherence and the thermodynamics of water. Int. J. Phys. B 9, 1813 (1995)CrossRefADSGoogle Scholar
  3. Babloyantz, A., Destexhe, A.: Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513 (1986)CrossRefADSGoogle Scholar
  4. Bannikov, V.S., et al.: Investigation of Bacillus megaterium cells. Dokl. Acad. Nauk. USSR 253, 479–480 (1980)Google Scholar
  5. Bhaumik, D., Bhaumik, K., Dutta-Roy, B.: On the possibility of ‘Bose condensation’ in the excitation of coherent modes in biological systems. Phys. Lett. 56A, 145 (1976)CrossRefADSGoogle Scholar
  6. Blinowska, K.J., et al.: Cell membrane as a possible site of Fröhlich’s coherent oscillations. Phys. Lett. 109A, 124–126 (1985)CrossRefADSGoogle Scholar
  7. Bloch, F.: Simple interpretation of the Josephson Effect. Phys. Rev. Letts. 21, 1241–1243 (1968)CrossRefADSGoogle Scholar
  8. Brill, A.S.: Activation of electron transfer reactions of the blue proteins. Biophys. J. 22, 139–142 (1978)CrossRefADSGoogle Scholar
  9. Careri, G.: Contribution to discussions in Theoretical Physics and Biology. In: Marois, M. (ed.) Proceedings of the First International Conference on Theoretical Physics and Biology, Versailles, 1967, p. 55. North Holland (1969)Google Scholar
  10. Careri, G.: Search for cooperative phenomena in Hydrogen-bonded amide structures. In: Haken, H., Wagner, M. (eds.) Cooperative Phenomena, pp. 391–394. Springer, Berlin (1973)CrossRefGoogle Scholar
  11. Cummings, F.W.: The condensate in 4He II as a pilot wave. Phys. Lett. 34A, 196 (1971)CrossRefADSGoogle Scholar
  12. Cummings, F.W., Hyland, G.J., Rowlands, G.: Proposal for measurement of the Helium-II condensate. Phys. Kondens Materie 12, 90–96 (1970)ADSGoogle Scholar
  13. Cummings, F.W., Hyland, G.J., Rowlands, G.: Proposal for measurement of 4He II condensate—a reply to recent criticisms. Phys. Lett. 86A, 370–372 (1981)CrossRefADSGoogle Scholar
  14. Del Giudice, E.: Coherence in condensed and living systems. Frontier Perspectives 3, 16–20 (1993)Google Scholar
  15. Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Spontaneous symmetry breaking and electromagnetic interactions in biological systems, Physica Scripta 38, 505–507 (1988a)Google Scholar
  16. Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Structures, correlations and electromagnetic interactions in living matter: theory and applications. In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 49–64. Springer, Berlin (1988b)Google Scholar
  17. Del Giudice, E.: Fröhlich Coherence and the Concept of Coherence in Condensed and Living Matter. In: Hyland, G.J., Rowlands, P. (eds): Herbert Fröhlich FRS, pp. 91–105. University of Liverpool (2008)Google Scholar
  18. Devyatkov, N.D.: Influence of millimetre-band electromagnetic radiation on biological objects. Sov. Phys. Uspheki 16(4), 568–579 (1974)CrossRefADSGoogle Scholar
  19. Drissler, F., Santo, L.: Coherent excitations and Raman effect. In: Fröhlich, H., Kremer, F. (eds.) Coherent Excitations in Biological Systems, pp. 6–9. Springer, Berlin (1983)CrossRefGoogle Scholar
  20. Dürr, H.-P.: Fröhlich’s Spark—Bridging Biology and Physics: Reflections of a Quantum Field Theorist. In: Hyland, G.J., Rowlands, P. (eds): Herbert Fröhlich FRS, pp. 69–90. University of Liverpool (2006).Google Scholar
  21. Elul, R.: Relation of neuronal waves to EEG. Neurosci. Res. Prog. Bull. 12, 97 (1974)Google Scholar
  22. Engelman, R., Ruppin, R.: Optical lattice vibrations in finite crystalsI. J. Phys. C (Ser 2) 1, 614–629 (1968)Google Scholar
  23. Fierz, M.: Zur Fermischen Theorie des β-Zerfalls. Z Phys. 104, 553 (1937)CrossRefADSGoogle Scholar
  24. Fröhlich, F., Hyland, G.J.: Fröhlich Coherence at the Mind-Brain Interface. In: King, J., Pribram, K.H. (eds.) Scale in Conscious Experience, pp. 407–438. Lawrence Erlbaum Associates Inc, Publishers (1995)Google Scholar
  25. Furia, L., et al.: Effect of millimeter-wave irradiation on growth of Saccharomyces cerevisiae. IEEE Trans. Biomed. Eng. 33(11), 993–999 (1986)CrossRefGoogle Scholar
  26. Gallez, D., Babloyantz, A.: Predictability of human EEG: a dynamical approach. Biol. Cybern. 64, 381 (1991)Google Scholar
  27. Gos, P., et al.: Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase of Saccharomyces cerevisiae cells. Bioelectromagnetics 18, 142–155 (1997)CrossRefGoogle Scholar
  28. Grundler, W., Kaiser, F.: Experimental evidence for coherent excitations correlated with cell growth. Nanobiology 1, 149–176 (1992)Google Scholar
  29. Hasted, J.B., Millany, H.M., Rosen, D.: Low frequency electrical properties of multilayer preparations of haemoglobin. J. Chem. Soc. Faraday Trans. II 77, 2289 (1981). See also: Hasted, J.B.: Metastable states in biopolymers, In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 102–113. Springer, Berlin (1988)Google Scholar
  30. Haug, H., Weiss, K.: A quantum mechanical determination of the superfluid density. Phys. Cond. Mat. 14, 324 (1972)Google Scholar
  31. Holland, B.W.: Dynamic specificity and the pairing of homologous chromosomes in meiosis. Theor. Biol. 35, 395–397 (1972)CrossRefGoogle Scholar
  32. Hyland, G.J.: Mott-insulation, high frequencies and the high transition temperature of the new ceramic superconductors. Phys. Stat. Sol. (b) 144, 753 (1987)CrossRefADSGoogle Scholar
  33. Hyland, G.J.: Quantum coherence and the understanding of life. In: Chang, J.-J., Popp, F.-A. (eds.) Biophotons, pp. 341–358. Kluwer Academic, Dordrecht (1998)CrossRefGoogle Scholar
  34. Hyland, G.J.: Coherent excitations in living biosystems and their implications: a qualitative overview. In: Dürr, H.-P., et al. (eds.) What is Life?, pp. 235–278. World Scientific, New Jersey (2002)CrossRefGoogle Scholar
  35. Hyland, G.J.: Fröhlich’s coherent excitations and the cancer problem: a retrospective overview. Electromagn. Med. Biol. 28, 316–329 (2009)Google Scholar
  36. Hyland, G.J., Rowlands, G.: Remarks on Fröhlich’s microscopic derivation of the Navier-Stokes equations. Phys. Lett. 33A, 197–198 (1970)CrossRefADSGoogle Scholar
  37. Hyland, G.J., Rowlands, G.: Hydrodynamics of a superfluid condensate. Physica 54, 542–556 (1971)CrossRefADSGoogle Scholar
  38. Hyland, G.J., Rowlands, G.: On the microscopic derivation of the two-fluid thermohydrodynamic equations for 4He II. J. Low Temp. Phys. 7, 271–289 (1972)CrossRefADSGoogle Scholar
  39. Hyland, G.J., Rowlands, G.: Condensate correlations and the λ-transition in 4He. Phys. Lett. 48A, 255–256 (1974)CrossRefADSGoogle Scholar
  40. Hyland, G.J., Rowlands, P. (eds): Herbert Fröhlich FRS. University of Liverpool (2006), 2nd edn. (2008)Google Scholar
  41. Kaiser, F.: Limit cycle model for brain-waves. Biol. Cybern. 27, 155–163 (1977)CrossRefzbMATHGoogle Scholar
  42. Kaiser, F.: Cooperative behaviour in brain activity. In: Mishra, R.K. (ed.) The Living State II, pp. 467–491. World Scientific, New Jersey (1985)Google Scholar
  43. Kaiser, F.: The role of chaos in biological system. In: Barrett, T.W., Pohl, H.A. (eds.) Energy transfer dynamics, pp. 224–236. Springer, Berlin (1987)CrossRefGoogle Scholar
  44. Kaiser, F.: Biophysical models related to Fröhlich excitations. Nanobiology 1, 149 (1992)Google Scholar
  45. Kaiser, F.: External signals and internal oscillation dynamics: biophysical aspects and modelling approaches for interaction of weak electromagnetic field at the cellular level. Bioelectrochem. Bioenerg. 41(1), 3–18 (1996)CrossRefGoogle Scholar
  46. Kemmer, N.: The particle aspect of meson theory. Proc. Roy Soc. A 173, 91–116 (1939)MathSciNetCrossRefADSGoogle Scholar
  47. Kofink, W.: Zur Diracshen Theorie des Elektrons. Ann. der Physik 5, FolgeBand 38, 421 (1940)Google Scholar
  48. Kolias, N., Melander, W.: Laser-induced stimulation of chymotrypsin activity. Phys. Lett. 57A, 102–104 (1976)CrossRefADSGoogle Scholar
  49. Kremer, F., et al.: The influence of low intensity millimetre waves on biological systems. In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 86–101. Springer, Berlin (1985)Google Scholar
  50. Lakhovsky, G.: ‘The secret of Life’. Stockwell. True Health Publishers, 2nd ed 1951—translation of the French original of 1921 (1951)Google Scholar
  51. Landau, L.D.: The theory of superfluidity of helium II. J. Phys. Moscow 5, 71 (1941)Google Scholar
  52. Landau, L.D.: On the theory of superfluidity of helium II. J. Phys. Moscow 11, 91 (1947)Google Scholar
  53. Layne, S.P., Bigio, I.J.: Raman spectroscopy of Bacillus megaterium using optical multi-channel analyzer. Physica Scripta 33, 91–96 (1986)CrossRefADSGoogle Scholar
  54. London, F.: Superfluids, Vol. I. Wiley, New York (1950)zbMATHGoogle Scholar
  55. Liboff, A.: Electromagnetic Biology and Medicine 24(3) (all) (2005)Google Scholar
  56. Lukashevsky, K.V., Belyaev, I.Y.: Switching of prophage lambda genes in E. coli. Med. Sci. Res. 18, 955–957 (1990)Google Scholar
  57. Mascarenhas, S.: Electrets in biophysics. J. Electrostat. 1, 141–146 (1975)CrossRefGoogle Scholar
  58. Matthias, B.: Progress in Low Temperature Physics, Vol. II, p. 138 (1955)Google Scholar
  59. Matthias, B.T.: Superconductivity and hardness. Phys. Lett. 25A, 226 (1967)CrossRefADSGoogle Scholar
  60. Matthias, B.T., Geballe, T.H., Compton, V.B.: Superconductivity. Rev. Mod. Phys. 35, 1 (1963)CrossRefADSGoogle Scholar
  61. McMillan, W.L.: Ground-state of liquid He4. Phys. Rev. 138, A442 (1965)CrossRefADSGoogle Scholar
  62. Mitra, T.K.: Electron-phonon interaction in the modified tight-binding approximation. J. Phys. C (Ser. 2) 2, 52–60 (1969)Google Scholar
  63. Mitra, T.K.: Comments on the modified tight-binding approximation. J. Phys. C 11, L191–L192 (1978)CrossRefADSGoogle Scholar
  64. Nakagawa, Y., Woods, A.D.B.: Lattice dynamics of niobium. Phys. Rev. Lett. 11, 271 (1963)CrossRefADSGoogle Scholar
  65. Newmark, P.: Oncogenes and cell growth. Nature 327, 101–102 (1987)CrossRefADSGoogle Scholar
  66. Pelling, A.E., et al.: Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004)CrossRefADSGoogle Scholar
  67. Penrose, O.: On the quantum mechanics of helium II. Phil. Mag. 42, 1373 (1951)CrossRefzbMATHGoogle Scholar
  68. Penrose, O., Onsager, L.: Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 577 (1956)CrossRefADSGoogle Scholar
  69. Pines, D.: Electron interaction in solids. Can. J. Phys. 34(12A), 1379–1394 (1956)CrossRefADSGoogle Scholar
  70. Pohl, H., Pollock, J.K.: Biological dielectrophoresis. In: Gutmann, F., Keyser, H. (eds.) Modern Bioeleoctochemistry, pp. 329–376. Plenum, New York (1986)Google Scholar
  71. Pohl, H., Pollock, J.K.: Emission of radiation by active cells. In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 140–147. Springer, Berlin (1988)Google Scholar
  72. Pokorný, J.: Fröhlich’s coherent vibrations in healthy and cancer cells. Neural Netw. World 19, 369–378 (2009)Google Scholar
  73. Pokorný, J., et al.: Vibrations in microtubules. J. Biol. Phys. 23, 171–179 (1997)CrossRefGoogle Scholar
  74. Pokorný, J., Wu, T.-M.: Biophysical Aspects of Coherence and Biological Order. Academia, Prague (1998)CrossRefGoogle Scholar
  75. Pokorný, J., Foletti, A., Kobilková, J., Jandová, A., Vrba, J., Vrba, J. Jr: Biophysical insights into cancer transformation and treatment (Review article), The Scientific World Journal Volume 2013, Article ID 195028, p. 11. See also: (2014)
  76. Popp, F.-A., Chang, J.-J.: The physical background and informational character of biophoton emission. In: Chang, J.-J., Popp, F.-A. (eds.) Biophotons, pp. 239–250. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  77. Popp, F.-A.: Coupling of Fröhlich Modes as a Basis of Biological Regulation. In: Hyland, G.J., Rowlands, P. (eds): Herbert Fröhlich FRS, pp. 139–175. University of Liverpool (2006)Google Scholar
  78. Preparata, G.: QED Coherence in Matter. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  79. Prohofsky, E.W., Eyster, J.M.: Prediction of giant breathing and rocking modes in double helical RNA. Phys. Lett. 50A, 329–330 (1974)Google Scholar
  80. Prohofsky, E.W.: Long-lived and large coherence length excitations in the DNA double helix. In: Barrett, T.W., Pohl, H.A. (eds.) Energy Transfer Dynamics, pp. 188–197. Springer, Berlin (1987)Google Scholar
  81. Radhakrishnan, V.: Superconductivity in transition elements. Phys. Lett. 16, 247–248 (1965)CrossRefADSGoogle Scholar
  82. Rothwarf, A.: Transition metals and the Fröhlich mechanism for superconductivity. Phys. Rev. B 2, 3560–3571 (1970). See also: Rothwarf, A.: Transition metals and the Fröhlich mechanism for superconductivity (Addendum). Phys. Rev. B 5, 2743 (1972)Google Scholar
  83. Rowlands, S.: Rouleaux formation of erythrocytes as evidence of Fröhlich’s mechanism. Neural Netw. World 4, 339–356 (contains earlier references) (1994)Google Scholar
  84. Schafroth, M.R.: Remarks on the Meissner effect. Phys. Rev. 111, 72–74 (1958)Google Scholar
  85. Schrödinger, E.: What is Life?. Cambridge University Press, Cambridge (1944)Google Scholar
  86. Sewell, G.L.: Off-diagonal long range order and the Meissner effect. J. Stat. Phys. 61, 415–422 (1990)MathSciNetCrossRefADSGoogle Scholar
  87. Sewell, G.L.: Off-diagonal long range order and superconductive electrodynamics. J. Math. Phys. 38, 2053–2071 (1997)MathSciNetCrossRefADSzbMATHGoogle Scholar
  88. Sewell, G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  89. Sewell, G.L.: On the interplay between Micro and Micro Phyics in Statistical mechanics. In: Hyland, G.J., Rowlands, P. (eds): Herbert Fröhlich FRS, pp. 33–52. University of Liverpool (2006).Google Scholar
  90. Sit’ko, S.P., Kuzmenko, A.P., et al.: Impact of millimetre wave electromagnetic radiation upon Guerin’s carcinoma in rats and Lewis lung carcinoma in mice. Exp. Oncol. 18, 419–422 (1996)Google Scholar
  91. Smith, C.W.: Is a living system a macroscopic quantum system? Frontier Perspectives 7, 9–15 (1998)Google Scholar
  92. Smith, C.W., et al.: The emission of low intensity electromagnetic radiation from multiple allergy patients and other biological systems. In: Jezowska Trzebiatowska, B., et al. (eds.) Photon Emission from Biological Systems, pp. 110–126. World Scientific, Singapore (1987)Google Scholar
  93. Swain, J.: Quantum mechanics, computability theory and Life. In: Dürr, H.-P., et al. (eds.) What is Life?, pp. 329–342. World Scientific, New Jersey (2002)CrossRefGoogle Scholar
  94. Swain, J.: On the possibility of large up-conversions and mode coupling between Fröhlich states and visible photons in biological (2006)
  95. Takahashi, Y.: An Introduction to Field Quantization. Pergamon Press, Oxford (1969)Google Scholar
  96. Takahashi, Y.: The Fierz Identities—a passage between spinors and tensors. J. Math. Phys. 24, 1783 (1983)MathSciNetCrossRefADSGoogle Scholar
  97. Taylor, A.W.B.: Wave equation for the macroscopic wave function in superconductors. J. Phys. C 3, L52–L55 (1970)ADSGoogle Scholar
  98. Uhlenbeck, G.E., Laporte, O.: New covariant relations following from the Dirac equations. Phys. Rev. 37, 1552–1553 (1931)CrossRefADSGoogle Scholar
  99. Uçar, A., Hyland, G.J.: Results on Fröhlich’s brain-wave model. Int. J. Eng. Model. 13, 1–5 (2000)Google Scholar
  100. Vos, M.H., et al.: Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption-spectroscopy. Proc. Nat. Acad. Sci. USA 88, 8885–8889 (1991)CrossRefADSGoogle Scholar
  101. Warburg, O.: On the Origin of Cancer Cells. Science 123, 309–314 (1956)CrossRefADSGoogle Scholar
  102. Webb, S.J., et al.: Resonances between 1011 and 1012 Hz in active bacterial cells as seen by laser-Raman spectroscopy. Phys. Lett. 60A, 267–268 (1977)CrossRefADSGoogle Scholar
  103. Webb, S.J.: Laser-Raman spectroscopy of living cells. Phys. Rep. 60, 201–224 (1980)CrossRefADSGoogle Scholar
  104. Webb, S.J.: Factors affecting the induction of lambda prophages by millimetre waves. Phys. Lett. 73A, 145–148 (1979)CrossRefADSGoogle Scholar
  105. Wigner, E.P.: The probability of the existence of a self-producing unit—contribution to ‘The logic of personal knowledge, Essays presented to Michael Polanyi on his 70th birthday’, Routledge, Paul & Keegan, London; Glencoe, III: Free Press (1961)Google Scholar
  106. Wigner, E.P.: Symmeteries and Reflections. Indiana University Press, Bloomington (1967)Google Scholar
  107. Yang, C.N.: Concept of off diagonal long-range order and the quantum phases He II and superconductivity. Rev. Mod. Phys. 34, 694–704 (1962)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of WarwickCoventryUK

Personalised recommendations