Advertisement

The Liverpool Years: The First Professor of Theoretical Physics

Chapter
  • 592 Downloads
Part of the Springer Biographies book series (SPRINGERBIOGS)

Abstract

In 1948, at Chadwick’s instigation, and after long negotiations with the Vice Chancellor to ensure that he would have an effectively independent research institute with the promise of a well-funded theoretical physics library under his own control, and minimal undergraduate teaching responsibilities, Fröhlich moved to Liverpool, to become, at the age of 42, the first Professor of Theoretical Physics, a position for which, incidentally, Schrödinger had proposed himself in 1946.

Keywords

Polarization Field Plasma Oscillation Dielectric Breakdown Small Polaron Static Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. Allcock, G.R.: On the polaron rest energy and effective mass. Phil. Mag. Suppl. 5(20), 412–451 (1956)Google Scholar
  2. Allen, W.D., et al.: Superconductivity of tin isotopes. Nature 166, 1071 (1950)CrossRefADSGoogle Scholar
  3. Alston, M.H., Alvarez, L.W., Eberhard, P.H., Good, M.L., Graziano, W., Ticho, H.K., Wojcicki, S.G.: Resonance in the K-π system. Phys. Rev. Lett. 6, 300 (1961)CrossRefADSGoogle Scholar
  4. Axe, J.D., Pettit, G.D.: Infrared dielectric dispersion and lattice dynamics of uranium dioxide and thorium oxide. Phys. Rev. 151, 676–680 (1966)CrossRefADSGoogle Scholar
  5. Bardeen, J.: Wave functions of superconducting electrons. Phys. Rev. 80, 567–574 (1950)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. Bardeen, J.: Theory of the Meissner effect in superconductors. Phys. Rev. 97, 1724 (1955)CrossRefADSGoogle Scholar
  7. Bardeen, J.: Interaction between electrons and lattice vibrations. Can. J. Phys. 34, 1171–1189 (1956)MathSciNetCrossRefADSGoogle Scholar
  8. Bardeen, J.: Superconducting fluctuations in one-dimensional organic solids. Solid State Commun. 13, 357–359 (1973a)CrossRefADSGoogle Scholar
  9. Bardeen, J.: Electron-phonon interactions and superconductivity. In: Haken, H., Wagner, M. (eds.) Cooperative Phenomena, pp. 63–78. Springer, Berlin (1973b)CrossRefGoogle Scholar
  10. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)MathSciNetCrossRefADSzbMATHGoogle Scholar
  11. Barker, A.S., Tinkham, M.: Far infra-red ferroelectric vibration mode in SrTiO3. Phys. Rev. 125, 1527–1530 (1962)CrossRefADSGoogle Scholar
  12. Bloch, F.: Quantum mechanics of electrons in crystal lattices. Z. Phys. 52, 555–600 (1928)CrossRefADSzbMATHGoogle Scholar
  13. Bohm, D., Pines, D.: A collective description of electron interactions. III: Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609–625 (1953)Google Scholar
  14. Bohr, N.: Physica XIX, 761–762 (1953)Google Scholar
  15. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. OUP, Oxford (1954)zbMATHGoogle Scholar
  16. Buckingham, M.J.: Specific heat of metals at low temperatures. Nature 168, 280 (1951)CrossRefADSGoogle Scholar
  17. Callen, H.B., Welton, T.A.: Irreversibility and generalised noise. Phys. Rev. 83, 34 (1951)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. Casado, J.M., Harding, J.H., Hyland, G.J.: Small polaron hopping in Mott-insulating UO2. J. Phys. Condens. Matter. 6, 4685–4698 (1994)CrossRefADSGoogle Scholar
  19. Cochran, W.: Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387–423 (1960)CrossRefADSGoogle Scholar
  20. Cooper, L.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956)CrossRefADSzbMATHGoogle Scholar
  21. Corak, W.B., Goodman, B.B., Satterthwaite, C.B., Wexler, A.: Exponential temperature dependence of the electronic specific heat of superconducting vanadium. Phys. Rev. 96, 1442–1444 (1954)CrossRefADSGoogle Scholar
  22. Cowley, R.A.: Temperature dependence of a transverse optic mode in SrTiO3. Phys. Rev. Lett. 9, 159–161 (1962)CrossRefADSGoogle Scholar
  23. Dahl, P.F.: Superconductivity—Its Historical Roots and Developments from Mercury to Ceramic Oxides. American Institute of Physics, New York (1992)Google Scholar
  24. Daunt, J.G., Mendelssohn, K.: An experiment on the mechanism of superconductivity. Proc. Roy. Soc. A185, 225–239 (1946)CrossRefADSGoogle Scholar
  25. Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JEPT 11, 696 (1960)Google Scholar
  26. Engelman, R., Ruppin, R.: Optical lattice vibrations in finite crystals—I. J. Phys. C (Ser 2) 1, 614–629 (1968)Google Scholar
  27. Faber, T.E., Pippard, A.B.: Kinetics of the phase transition in superconductors. Prog. Low Temp. Phys. 1, 159–183 (1955)CrossRefGoogle Scholar
  28. Feynman, R.: Slow electrons in a polar lattice. Phys. Rev. 97, 660–665 (1955)CrossRefADSzbMATHGoogle Scholar
  29. Frenkel, J.: On a possible explanation of superconductivity. Phys. Rev. 43, 907–912 (1933)CrossRefADSGoogle Scholar
  30. Fröhlich, H.: Interviews with the author (1983)Google Scholar
  31. Genzel, L., Martin, T.P.: Infrared absorption in small ionic crystals. Phys. Stat. Sol. B 51, 91–99 (1972)Google Scholar
  32. Genzel, L., Martin, T.P.: Infrared absorption by surface phonons and surface plasmons in small crystals. Surf. Sci. 34, 33–49 (1973)CrossRefADSGoogle Scholar
  33. Gurari, M.: Self-energy of slow electrons in polar materials. Phil. Mag. 44, 329–336 (1953)CrossRefzbMATHGoogle Scholar
  34. Harris, F.E., Alder, B.J.: Dielectric polarization in polar substances. J. Chem. Phys. 21, 1031 (1953)CrossRefADSGoogle Scholar
  35. Heisenberg, W.: Physica XIX, 762–764 (1953)Google Scholar
  36. Holstein, T.: Studies of polaron motion: PartII. The ‘small polaron’. Ann. Phys. (USA) 8, 343–389 (1959)CrossRefADSGoogle Scholar
  37. Huang, K.: Lattice vibrations and optical waves in ionic crystals. Nature 167, 779 (1951a)CrossRefADSGoogle Scholar
  38. Huang, K.: A note on Fröhlich’s theory of superconductivity. Proc. Phys. Soc. A 64, 867–873 (1951b)CrossRefADSzbMATHGoogle Scholar
  39. Huby, R.: Physics at Liverpool. Nature 166, 552 (1950)CrossRefADSGoogle Scholar
  40. Huby, R.: Selective historical notes on theoretical physics at Liverpool during Fröhlich’s tenure of the chair 1948–1973, personal communication to the author, Sept 1988Google Scholar
  41. Hyland, G.J.: On the electronic phase transitions in the lower oxides of vanadium. J. Phys. C (Ser 2) 1, 189–207 (1968)Google Scholar
  42. Hyland, G.J.: A non-local spinor field theory of matter. Gen. Relativ. Gravit. 10, 281 (1979)MathSciNetCrossRefGoogle Scholar
  43. Kamerlingh, O.H.: Verdere proeven met vloeibaar helium. q. Over den electrischen weerstand van zuivere metalen enz. x. Metingen betreffende den electrischen weerstand van thallium in het temperatuurgebied van vloeibaar helium, Verslagen 31 (Oktober 1922) Leiden Commun. 160, 467–474 (1922)Google Scholar
  44. Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. A 173, 91–116 (1939)MathSciNetCrossRefADSGoogle Scholar
  45. Kemmer, N.: The impact of Yukawa’s Meson theory on workers in Europe: a reminiscence. Prog. Theor. Phys. Suppl. 602–607 (1965) (Japan Extra No)Google Scholar
  46. Kittel, C.: Quantum Theory of Solids. Wiley, New York (1963)Google Scholar
  47. Kuper, C.G.: On the thermal properties of Fröhlich’s one-dimensional superconductor. Proc. Roy. Soc. A 227, 214–228 (1955)CrossRefADSzbMATHGoogle Scholar
  48. Kuper, C.G.: An introduction to the theory of superconductivity. Clarendon Press, Oxford (1967)Google Scholar
  49. Kuper, C.G.: Fröhlich’s One-dimensional Superconductor, or a Charge-density Wave? In: Hyland, G.J., Rowlands, P. (eds) Herbert Frohlich FRS, 53–61. University of Liverpool (2008)Google Scholar
  50. Landau, L.D.: Electron motion in crystal lattices. Phys. Zeits Sowjetunion 3, 664–665 (1933)zbMATHGoogle Scholar
  51. Lang, I.G., Firsov, Yu.A.: Kinetic theory of semiconductors with low mobility. Sov. Phys. JETP 16, 1301–1312 (1963)ADSGoogle Scholar
  52. Lee, T.D., Low, F.E., Pines, D.: The motion of slow electrons in a polar crystal. Phys. Rev. 90, 297–302 (1953)MathSciNetCrossRefADSzbMATHGoogle Scholar
  53. Lee, T.D., Pines, D.: Interaction of a non-relativistic particle with a scalar field with application to slow electrons in polar crystals. Phys. Rev. 90, 883 (1953)CrossRefADSGoogle Scholar
  54. Lee, T.D., Yang, C.N.: Implications of the intermediate boson basis of the weak interaction: existence of a quartet of intermediate bosons and their dual istopic spin transformation. Phys. Rev. 119, 1410–1419 (1960)MathSciNetCrossRefADSzbMATHGoogle Scholar
  55. London, F., London, H.: The electromagnetic equations of a supraconductor. Proc. Roy. Soc. A 149, 71 (1935)CrossRefADSzbMATHGoogle Scholar
  56. London, F.: Superfluids, vol. I, p. 152. Wiley, New York (1950)Google Scholar
  57. Mano, K.: The self-energy of the scalar nucleon. Prog. Theor. Phys. 14, 435 (1955)CrossRefADSzbMATHGoogle Scholar
  58. Maxwell, E.: Isotope effect in the superconductivity of mercury. Phys. Rev. 78, 477 (1950)CrossRefADSGoogle Scholar
  59. Mie, G.: Contributions to the optics of turbid media, especially colloidal metal solutions. Ann der Physik 25, 377–445 (1908)Google Scholar
  60. Migdal, A.B.: Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JEPT 34, 996 (1958)MathSciNetGoogle Scholar
  61. Mitra, T.K.: Electron-phonon interaction in the modified tight-binding approximation. J. Phys. C (Ser 2) 2, 52–60 (1969)Google Scholar
  62. Mitra, T.K.: Comments on the modified tight-binding approximation. J. Phys. C (Ser 2) 11, L191–2 (1978)Google Scholar
  63. Ogg, R.A.: Bose-Einstein condensation of trapped electron pairs. Phase separation & superconductivity of metal-ammonia solutions. Phys. Rev. 69, 243–244 (1946)CrossRefADSGoogle Scholar
  64. Peierls, R.: The theory of the electrical and thermal conduction of metals. Ann. Phys. (Lpz) 3, 121 (1930)CrossRefADSGoogle Scholar
  65. Pekar, S.I.: Local quantum states of an electron in an ideal ionic crystal. J. Phys. USSR 16, 341–346 (1946a)Google Scholar
  66. Pekar, S.I.: Autolocalisation of an electron in a dielectric inertially polarizing medium. J. Phys. USSR 16, 347–350 (1946b)Google Scholar
  67. Pekar, S.I.: Theory of the polaron. JETP (USSR) 19, 796–806 (1949)Google Scholar
  68. Powles, J.: Some reminiscences of research in Liverpool in 1950. In: Haken, H., Wagner, M. (eds.) Cooperative Phenomena, pp. 436–444. Springer, Berlin (1973)CrossRefGoogle Scholar
  69. Reynolds, C.A., et al.: Superconductivity of isotopes of mercury. Phys. Rev. 78, 487 (1950)CrossRefADSGoogle Scholar
  70. Ruppin, R., Engelman, R.: Optical lattice vibrations in finite crystals—II. J. Phys. C (Ser 2), 1, 630–643 (1968)Google Scholar
  71. Ruppin, R., Engelman, R.: Optical phonons of small crystals. Rep. Prog. Phys. 33, 149–196 (1970)CrossRefADSGoogle Scholar
  72. Schafroth, M.R.: Remarks on the Meissner effect. Phys. Rev. 111, 72–74 (1958)MathSciNetCrossRefADSGoogle Scholar
  73. Sewell, G.L.: Electrons in a polar crystal. Phil. Mag. 3, 1361–1380 (1958)MathSciNetCrossRefADSzbMATHGoogle Scholar
  74. Sewell, G.L.: Model of thermally activated hopping motion in solids. Phys. Rev. 129, 597–608 (1963)CrossRefADSzbMATHGoogle Scholar
  75. Schultz, T.D.: Slow electrons in polar crystals: self-energy, mass, and mobility. Phys. Rev. 116, 526–543 (1959)CrossRefADSzbMATHGoogle Scholar
  76. Shockley, W.: Hot electrons in germanium and Ohm’s law. Bell Syst. Tech. J. 30, 990–1034 (1951)Google Scholar
  77. Spitzer, W.G., Miller, R.C., Kleinmann, D.A., Howarth, L.E.: Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev. 126, 1710 (1962)CrossRefADSGoogle Scholar
  78. Szigeti, B.: Shape-dependent properties of dielectrics. ERA Report L/T246 (1951)Google Scholar
  79. Terreaux, Ch.: Isobaric space operators from a generalised factorisation of the restricted Lorentz group. Nucl. Phys. 35, 393–420 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  80. von Hippel, A.: Der Mechanismus des ‘elektrischen’ Durchschlags in festen Isolatoren II. Z. Phys. 68, 309–324 (1931)CrossRefADSGoogle Scholar
  81. von Hippel, A.: Der Mechanismus des ‘elektrischen’ Durchschlags in festen Isolatoren III. Z. Phys. 75, 145–170 (1932)CrossRefADSGoogle Scholar
  82. Welker, H.: Über ein elektronentheoretische Modell des Supraleiters. Z. Tech. Phys. 19, 606–611 (1938)Google Scholar
  83. Wentzel, G.: The interaction of lattice vibrations with electrons in a metal. Phys. Rev. 83, 168–169 (1951)CrossRefADSzbMATHGoogle Scholar
  84. Wilson, A.H.: Theory of Metals, Cambridge University Press (1936)Google Scholar
  85. Yamashita, J., Kurosawa, T.: On electronic current in NiO. J. Phys. Chem. Solids 5, 34–43 (1958)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of WarwickCoventryUK

Personalised recommendations