Skip to main content

Biomaterials in Dentistry

  • Chapter
  • First Online:
Biomaterials and Medical Devices

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 58))

Abstract

Dental materials are used for the replacement of destroyed or lost structures and for the restoration of disturbed functions of the orofacial organ (hard tooth substance, teeth, and soft tissues of the mouth). Among the main challenges in restorative dentistry in Indonesia are the caries, recurrent caries due to the leakage or restoration failure  that may lead to infection of the pulp and periodontal tissue. Therefore, it is desirable to develop dental materials having ability to seal the marginal interface between material and tooth structure, bioactivity to promote remineralization and good bonding with tooth structure and antimicrobial capabilities. This chapter describes dental materials in restorative dentistry, the most common dental problems in Indonesia, and the development of local bioactive dental materials by utilizing the diversity of natural resources in Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertsson, K., Persson, A., & van Dijken, J. (2012). Effect of essential oils containing and alcohol-free chlorhexidine mouthrinses on cariogenic micro-organisms in human saliva. Acta Odontologica Scandinavica, 71, 883–891.

    Article  Google Scholar 

  • Alonso, R. C. B., Correr, G. M., Borges, A. F. S., Kantovitz, K. R., & Rontani, R. M. P. (2005). Minimally invasive dentistry: Bond strength of different sealant and filling materials to enamel. Oral Health and Preventive Dentistry, 3, 87–95.

    Google Scholar 

  • American Dental Association Council on Scientific Affairs. (2006). Professionally applied topical fluoride: Evidence-based clinical recommendations. The Journal of the American Dental Association, 137, 1151–1159.

    Google Scholar 

  • Amirouche-Korichi, A., Mouzali, M., & Watts, D. (2009). Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dental Materials, 25, 1411–1418.

    Article  Google Scholar 

  • Ardhani, R., Susilowati, R., & Ana, I. D. (2015). Functional recovery of axonal injury induced by gelatin-hydrogel film and PRP: An Initial Study in Rats. Journal of Biomedical Science and Engineering, 8, 160–169.

    Article  Google Scholar 

  • Atai, M., Nekoomanesh, M., Hashemi, S. A., & Amani, S. (2004). Physical and mechanical properties of an experimental dental composite based on a new monomer. Dental Materials, 20, 663–668.

    Article  Google Scholar 

  • Barnett, M. L. (2006). The rationale for the daily use of an antimicrobial mouthrinse. Journal of the American Dental Association, 137, S16–S21.

    Article  Google Scholar 

  • Beauchamp, J,, Caufield, P. W., Crall, J. J., Donly, K., Feigal, R., Gooch, B., Ismail, A., Kohn, W., Siegal, M., & Simonsen, R. (2008). Evidence-based clinical recommendations for the use of pit-and-fissure sealants. The Journal of the American Dental Association, 139, 257–268.

    Google Scholar 

  • Beun, S., Bailly, C., Devaux, J., & Leloup, G. (2012). Physical, mechanical and rheological characterization of resin-based pit and fissure sealants compared to flowable resin composites. Dental Materials, 28, 349–359.

    Article  Google Scholar 

  • Bouschlicher, M. R., Reindhardt, J. W., & Vargas, M. A. (1997). Surface treatment techniques for resin composite repair. American Journal of Dentistry, 10, 279–283.

    Google Scholar 

  • Bowen, R. L., & Marjenhoff, W. (1992). Dental composites/glass ionomers: The materials. Advances in Dental Research, 6, 44–49.

    Google Scholar 

  • Cappeli, D., & Mobley, C. (2007). Prevention in clinical oral health care (7th ed.). Philadelphia: Elssevier.

    Google Scholar 

  • Considine, G. (2005). Dental Materials. Van Nostrand’s Scientific Encyclopedia. John Wiley & Sons.

    Google Scholar 

  • Department of Research and Development. (2013). “Riset Kesehatan Dasar” (Basic Health Research). Jakarta, Indonesian Ministry of Health.

    Google Scholar 

  • Dewanto, I., & Lestari, N. (2014). “Panduan Pelaksanaan Pelayanan Kedokteran Gigi dalam Sistem Jaminan Kesehatan Nasional” (Guideline on Dental care in the National Healthcare System). 1 Ed. Jakarta, Board of Indonesian Dentist Association.

    Google Scholar 

  • Dodes, J. (2001). The amalgam controversy. Journal of the American Dental Association, 132, 348–356.

    Article  Google Scholar 

  • Donly, K. (2002). Sealants: Where we have been; where we are going. General Dentistry, 50, 438–440.

    Google Scholar 

  • Donovan, T., & Heymann, H. O. (2010). Enduring amalgam: No requiem needed. Journal of Esthetic and Restorative Dentistry, 22, 277–279.

    Article  Google Scholar 

  • Eckerman, M., Suuronen, K., Jolanki, R., & Alanko, K. (2004). Methacrylates in dental restorative materials. Contact Dermatitis, 50, 233–237.

    Article  Google Scholar 

  • Eliades, G., Kakaboura, A., & Palaghias, G. (1998). Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dental Materials, 14, 57–63.

    Article  Google Scholar 

  • Erdemir, U., Sancakli, H. S., Yaman, B. C., Ozel, S., Yucel, T., & Yildiz, E. (2014). Clinical comparison of a flowable composite and fissure sealant: A 24-month split-mouth, randomized, and controlled study. Journal of Dentistry, 42, 149–157.

    Article  Google Scholar 

  • Farooq, I., Moheet, I. A., Imran, Z., & Farooq, U. (2013). A review of novel dental caries preventive material: Casein phosphopeptide—amorphous calcium phosphate (CPP-ACP) complex. King Saud University Journal of Dental Sciences, 4, 47–51.

    Article  Google Scholar 

  • Featherstone, J. (2000). The science and practice of caries prevention. Journal of the American Dental Association, 131, 887–899.

    Article  Google Scholar 

  • Ferracane, J. L. (1994). Elution of leachable components from composite. Journal of Oral Rehabilitation, 21, 441–452.

    Article  Google Scholar 

  • Ferracane, J. L. (1995). Current trends in dental composites. Critical Reviews in Oral Biology and Medicine, 6, 302–318.

    Article  Google Scholar 

  • Ferracane, J. L. (2011). Resin composite: State of the art. Dental Materials, 27, 29–38.

    Article  Google Scholar 

  • Francisconi, L., Scaffa, P., Barros, V., Coutinho, M., & Francisconi, P. (2009). Glass ionomer cements and their role in the restoration of non-carious cervical lesions. Journal of Applied Oral Science, 17, 364–369.

    Google Scholar 

  • Gonzalez-Cabezas, C. (2010). The chemistry of caries: Remineralization and demineralization events with direct clinical relevance. Dental Clinics of North America, 54, 469–478.

    Article  Google Scholar 

  • Gordan, V., Mjør, I., Blum, I., & Wilson, N. (2003). Teaching students the repair of resin-based composite restorations: A survey of North American dental schools. Journal of the American Dental Association, 134, 317–323.

    Article  Google Scholar 

  • Haffajee, A. D., Yaskell, T., & Socransky, S. S. (2008). Antimicrobial effectiveness of an herbal mouthrinse compared with an essential oil and a chlorhexidine mouthrinse. Journal of the American Dental Association, 139, 606–611.

    Article  Google Scholar 

  • Handajani, J. (2006). “Kadar sIgA saliva penderita gingivitis setelah berkumur epogallocathechin gallate ekstrak the Camellia sinensis” (The sIgA saliva content of gingivitis patients after gargling with extract of eopgallocathechin galate). Jurnal Kedokteran Yarsi, 14, 106–110.

    Google Scholar 

  • Handajani, J. (2009). “Efek pasta gigi ekstrak etanolik teh segar 2 % dan epigallocathechin gallate ekstrak teh 0.1 % terhadap indeks plak gigi” (Effect of toothpast containing ethanolic extract of 2 % fresh tea and 0.1 % of epigallocathechin gallate toward tooth plaque index). Dentika Dental Journal, 14, 25–40.

    Google Scholar 

  • Handajani, J. (2012). “Efek antimikroba pasta gigi kandungan ekstrak daun teh 2 % (Camelia sinensis) terhadap A. Actinomycetemcomitants” (Effect of antimicrobial toothpaste containing 2 % extract of tea leave Camelia sinensis toward A. Actinomycetemcomitants). Majalah Kedokteran Gigi, 19, 9–12.

    Google Scholar 

  • He, L. H., & Swain, M. (2011). A novel polymer infiltrated ceramic dental material. Dental Materials, 27, 527–534.

    Article  Google Scholar 

  • He, L. H., Purton, D., & Swain, M. (2011). A novel polymer infiltrated ceramic for dental simulation. Journal of Materials Science. Materials in Medicine, 22, 1639–1643.

    Article  Google Scholar 

  • Herliansyah, M. K., Rinastiti, M., & Hilmi, I. (2013). “Pengembangan material pasak endodontik Ti/40HA dengan menggunakan konsep Functionally Gradient Material” (Development of endodonthic abutment material Ti/40HA using a functionally gradient material concept). Teknosains, 2, 115–120.

    Google Scholar 

  • Heymann, H., Swift, E., Williams, D. M., & Ritter, A. (2012). Sturdevant’s art and science of operative dentistry (6th ed.). Toronto: McGraw-Hill.

    Google Scholar 

  • Hobdell, M., Petersen, P. E., Clarkson, J., & Johnson, N. (2003). Global goals for oral health 2020. International Dental Journal, 53, 285–288.

    Article  Google Scholar 

  • Hosoda, H., Yamada, T., & Inokoshi, S. (1990). SEM and elemental analysis of composite resins. Journal of Prosthetic Dentistry, 64, 669–676.

    Article  Google Scholar 

  • Ilie, N., & Durner, J. (2013). Polymerisation kinetics in bulk-fill resin-based composites. Dental Materials, 29(S1), e43.

    Article  Google Scholar 

  • Ilie, N., Bucuta, S., & Dreaenert, M. (2013). Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Operative Dentistry, 38, 618–625.

    Article  Google Scholar 

  • Irnawati, D., Agustiono, P., & Wardhani, E. (2010). The effect of CU concentration in the Cu-natural zeolite on its antifungal activity towards Candida albicans. FKG UGM. Research Report, Yogyakarta.

    Google Scholar 

  • Irnawati, D., Widjijono, W. K., & Asmara, W. (2013). Effect of Copper (III) Chloride concentration owards copper ions sorption on natural zeolite from Wonosari. The Indonesian Journal of Dental Research Proceeding of The International Symposium on Oral and Dental Sciences, 39–43.

    Google Scholar 

  • Jackson, R. (2011). Placing posterior composites: Increasing efficiency. Dentistry Today, 30, 130–131.

    Google Scholar 

  • Kantovitz, K. R., Pascon, F. M., Correr, G. M., Alonso, R. C. B., Rodrigues, L. K. A., Alves, M. C., & Puppin-Rontani, R. M. (2009). Influence of environmental conditions on properties of ionomeric and resin sealant materials. Journal of Applied Oral Science, 17, 294–300.

    Article  Google Scholar 

  • Kelly, J. R. (2004). Dental ceramics: Current thinking and trends. Dental Clinics of North America, 48, 513–530.

    Article  Google Scholar 

  • Kelly, J. R. (2008). Dental Ceramics. Journal of the American Dental Association, 139, S4–S7.

    Article  Google Scholar 

  • Kidd, E., Smith, B., Watson, T., & Pickard, H. (2003). Pickard’s manual of operative dentistry (8th ed.). New York: Oxford University Press.

    Google Scholar 

  • Kilpatrick, N. (1996). Glass ionomer cements: Their application in children. Part 1. Dentistry Update, 23, 236–238.

    Google Scholar 

  • Klapdohr, S., & Mozner, N. (2005). New inorganic components for dental filling composites. Monatshefte fuer Chemie, 136, 21–45.

    Article  Google Scholar 

  • Komatsu, H., Shimokobe, H., Kawakami, S., & Yoshimura, M. (1994). Caries-preventive effect of glass ionomer sealant reapplication: Study presents three-year results. Journal of the American Dental Association, 125, 543–549.

    Article  Google Scholar 

  • Labella, R., Lambrechts, P., van Meerbeek, B., & Vanherle, G. (1999). Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dental Materials, 15, 128–137.

    Article  Google Scholar 

  • Leinfelder, K. (2000). Porcelain esthetics for the 21st century. Journal of the American Dental Association, 131, 47S–51S.

    Article  Google Scholar 

  • Lin, C., Lee, S., Keh, E., Dong, D., Huang, H., & Shih, Y. (2000). Influence of silanization and filler fraction on aged dental composites. Journal of Oral Rehabilitation, 27, 919–926.

    Article  Google Scholar 

  • Lowe, E. (2012). Chapter 19—Single-Tooth All-Ceramic Restorations. In G. Freedman (Ed.), Contemporary Esthetic Dentistry. Saint Louis: Mosby.

    Google Scholar 

  • Mäkinen, K. K., Järvinen, K. L., Anttila, C. H., Luntamo, L. M., & Vahlberg, T. (2013). Topical xylitol administration by parents for the promotion of oral health in infants: A caries prevention experiment at a Finnish Public Health Centre. International Dental Journal, 63, 210–224.

    Article  Google Scholar 

  • Marinho, V., Higgins, J., Sheiham, A., & Logan, S. (2009). One topical fluoride (toothpastes, or mouthrinses, or gels, or varnishes) versus another for preventing dental caries in children and adolescents (Review). Cochrane Database Systematic Review, 1, 1–15.

    Google Scholar 

  • Marquis, R. E. (1995). Antimicrobial actions of fluoride for oral bacteria. Canadian Journal of Microbiology, 41, 955–964.

    Article  Google Scholar 

  • Meyer, J., Cattani-Lorente, M., & Dupuis, V. (1998). Compomers: Between glass-ionomer and composites. Biomaterials, 19, 529–539.

    Google Scholar 

  • Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R., & Fleming, G. J. P. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. Journal of Dentistry, 40, 500–505.

    Article  Google Scholar 

  • Morris, H. F., Manz, M., Stoffer, W., & Weir, D. (1992). Casting alloys: The materials and “the clinical effects”. Advances in Dental Research, 6, 28–31.

    Google Scholar 

  • Mulyawati, E., Marsetyawan. H. N. E. S., Sunarintyas, S., & Handajani, J. (2015). Physical properties of calcite synthesized hydroxyapatite as the filler of epoxy-resin-based root canal sealer. Dental Journal, 46, 209–214.

    Google Scholar 

  • Nicholson, J. W., & Alsarheed, M. (1998). Changes on storage of polyacid-modified composite resins. Journal of Oral Rehabilitation, 25, 616–620.

    Article  Google Scholar 

  • Nirmaladewi, A., Handajani, J., & Tandelilin, R. (2007). Saliva and gingivitis status on gingivitis patients after gargking Epigalacatechin gallate (EGCG) obtained from green tea (Camelia sinensis) extract. Majalah Obat Tradisional, 12, 31–35.

    Google Scholar 

  • Nör, J. E. (2006). Buonocore memorial lecture. Operative Dentistry, 31, 633–642.

    Article  Google Scholar 

  • Oong, E. M., Griffin, S. O., Kohn, W. G., Gooch, B. F., & Caufield, P. W. (2008). The effect of dental sealants on bacteria levels in caries lesions: A review of the evidence. Journal of the American Dental Association, 139, 271–278.

    Article  Google Scholar 

  • Petersen, P., Baez, R., Kwan, S., & Ogawa, H. (2009). Future Use of Materials for Dental Restorations: Report of The Meeting Convened at WHO HQ, Geneva, Switzerland.

    Google Scholar 

  • Peutzfeldt, A. (1997). Resin composites in dentistry: The monomer systems. European Journal of Oral Sciences, 105, 97–116.

    Article  Google Scholar 

  • Pitts, N. B. (2004). Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Research, 38, 294–304.

    Article  Google Scholar 

  • Pujiyanto, E. E., Tontowi, A. E., Wildan, M. W., & Siswomihardjo, W. (2006). “Sintesis hidroksiapatit dari gipsum Tasikmalaya sebagai bahan baku produk tulang buatan” (Synthesis of hydroxyapatite from Tasikmalaya gypsum for artificial bone material). In Seminar on Aplication and Research in Industrial Technology. Yogyakarta, Jurusan Teknik Mesin dan Industri UGM, pp. 119–126.

    Google Scholar 

  • Randall, R., & Wilson, N. (1999). Glass-ionomer restoratives: A systematic review of a secondary caries treatment effect. Journal of Dental Research, 78, 628–637.

    Article  Google Scholar 

  • Reich, E., Petersson, L. G., Netuschil, L., & Brecx, M. (2002). Mouthrinses and dental caries. International Dental Journal, 52, 337–345.

    Article  Google Scholar 

  • Reynolds, E. C., Cai, F., Cochrane, N. J., Shen, P., Walker, G. D., Morgan, M. V., & Reynolds, C. (2008). Fluoride and casein phosphopeptide-amorphous calcium phosphate. Journal of Dental Research, 87, 344–348.

    Article  Google Scholar 

  • Ricketts, D., & Bartlett, D. (2011). Advanced operative dentistry: A practical approach. Toronto: Elsevier.

    Google Scholar 

  • Rothwell, M., Anstice, H. M., & Pearson, G. J. (1998). The uptake and release of fluoride by ion-leaching cements after exposure to toothpaste. Journal of Dentistry, 26, 591–597.

    Article  Google Scholar 

  • Ruyter, I. E. (1988). Composites—characterization of composite filling materials: Reactor response. Advances in Dental Research, 2, 122–133.

    Google Scholar 

  • Sakaguchi, R., & Powers, J. (2012). Craig’s restorative dental materials (13th ed.). Philadelphia: Elsevier.

    Google Scholar 

  • Shantiningsih, R. R., Suwaldi & Mudjosemedi, M. (2015). “Formulasi sediaan patch gingiva mukoadesif betacaroten untuk radioprotektor radiografi panoramic” (Formulation of gingiva mucoadhesive patch for panoramic radiographic radioprotector). Proceeding Book GAMA Dentistry Scientific Conference, Yogyakarta, 26–28 February.

    Google Scholar 

  • Shenoy, A., & Shenoy, N. (2010). Dental ceramics: An update. Journal of Conservative Dentistry, 13, 195–203.

    Article  Google Scholar 

  • Silverman Jr., S., & Wilder, R. (2006). Antimicrobial mouthrinse as part of a comprehensive oral care regimen. The Journal of the American Dental Association, 137, S22–S26.

    Google Scholar 

  • Simonsen, R. J., & Neal, R. C. (2011). A review of the clinical application and performance of pit and fissure sealants. Australian Dental Journal, 56, 45–58.

    Article  Google Scholar 

  • Simonsen, R. J. (1991). Retention and effectiveness of dental sealant after 15 years. Journal of the American Dental Association, 122, 34–42.

    Article  Google Scholar 

  • Smales, R., & Wong, K. (1999). 2-year clinical performance of a resin-modified glass ionomer sealant. American Journal of Dentistry, 12, 59–61.

    Google Scholar 

  • Tesk, J. A., Antonucci, J. M., Carey, C. M., Eichmiller, F. C., Kelly, J. R., Rupp, N. W., et al. (2000). Dental Materials. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley.

    Google Scholar 

  • Todd, J., & Wanner, M. (2014). Scientific documentation Tetric Evo Ceram Bulk Fill. Liechenstein: Ivoclar Vivadent.

    Google Scholar 

  • Twetman, S., Axelsson, S., Dahlgren, H., Holm, A. K., Källestål, C., Lagerlöf, F., et al. (2003). Cariespreventive effect of fluoride toothpaste: A systematic review. Acta Odontologica Scandinavica, 61, 347–355.

    Article  Google Scholar 

  • Tyas, M., Anusavice, K., & Frencken, J. (2000). Minimal intervention Dentistry-A Review. FDI Commission Project. International Dental Journal, 50, 1–12.

    Article  Google Scholar 

  • Uno, S., Finger, W. J., & Fritz, U. (1996). Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dental Materials, 12, 64–69.

    Article  Google Scholar 

  • Upadhyay, D., Panchal, M. A., Dubey, R. S., & Srivastava, V. K. (2006). Corrosion of alloys used in dentistry: A review. Materials Science and Engineering A, 432, 1–11.

    Article  Google Scholar 

  • Van Rijkom, H. M., Truin, G. J., & Van’t Hof, M. A. (1996). A Meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. Journal of Dental Research, 75, 790–795.

    Google Scholar 

  • Walker, C. B. (1988). Microbiological effects of mouthrinses containing antimicrobials. Journal of Clinical Periodontology, 15, 499–505.

    Article  Google Scholar 

  • Wang, Z., Sa, Y., Sauro, S., Chen, H., Xing, W., Ma, X., et al. (2010). Effect of desensitising toothpastes on dentinal tubule occlusion: A dentine permeability measurement and SEM in vitro study. Journal of Dentistry, 38, 400–410.

    Article  Google Scholar 

  • Watson, T. F., Atmeh, R. A., Sajini, S., Cook, R. J., & Festy, F. (2014). Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease. Dental Materials, 30, 50–61.

    Article  Google Scholar 

  • Weyant, R. J., Tracy, S. L., Anselmo, T., Beltrín-Aguilar, E. D., Donly, K. J., Frese, W. A., et al. (2013). Topical fluoride for caries prevention. Journal of the American Dental Association, 144, 1279–1291.

    Article  Google Scholar 

  • Wilder, J., Swift, J., May, J., Thompson, J. Y., & McDougal, R. A. (2000). Effect of finishing technique on the microleakage and surface texture of resin-modified glass ionomer restorative materials. Journal of Dentistry, 28, 367–373.

    Article  Google Scholar 

  • Wilson, A. (1989). Development in glass-ionomer cements. The International Journal of Prosthodontics, 2, 438–446.

    Google Scholar 

  • Winkler, M. M., Deschepper, E., Dean, J., Moore, B., Cochran, M., & Ewoldsen, N. (1996). Using a resin-modified glass ionomers as an occlusal sealant: A one year clinical study. Journal of the American Dental Association, 127, 1508–1514.

    Article  Google Scholar 

  • Xu, H. (1999). Dental composite resins containing silica-fused ceramic single crystalline whiskers with various filler levels. Journal of Dental Research, 78, 1304–1311.

    Article  Google Scholar 

  • Yang, L., Wang, J., Hong, J., Santerre, J. P., & Pilliar, R. M. (2003). Synthesis and characterization of a novel polymer-ceramic system for biodegradable composite applications. Journal of Biomedical Materials Research, 66A, 622–632.

    Article  Google Scholar 

  • Yengopal, V., & Mickenautsch, S. (2009). Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): A meta-analysis. Acta Odontologica Scandinavica, 67, 321–332.

    Article  Google Scholar 

  • Yip, K., & Smales, R. (2013). Oral diagnosis and treatment planning: Part 2. Dental caries and assessment of risk. British Dental Journal, 213, 59–66.

    Article  Google Scholar 

  • Zero, D. T., Zhang, J. Z., Harper, D., Wu, M., Kelly, S., Waskow, J., & Hoffman, M. (2004). The remineralizing effect of an essential oil fluoride mouthrinse in an intraoral caries test. Journal of the American Dental Association, 135, 231–237.

    Article  Google Scholar 

  • Zhang, Q., Van Palenstein Helderman, W. H., Van’t Hof, M. A., & Truin, G. J. (2006). Chlorhexidine varnish for preventing dental caries in children, adolescents and young adults: A systematic review. European Journal of Oral Sciences, 114, 449–455.

    Google Scholar 

Download references

Acknowledgment

The author thanks Dr. Hermawan, Laval University, for the discussion during the preparation of this chapter and revision of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Rinastiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rinastiti, M. (2016). Biomaterials in Dentistry. In: Mahyudin, F., Hermawan, H. (eds) Biomaterials and Medical Devices. Advanced Structured Materials, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14845-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14845-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14844-1

  • Online ISBN: 978-3-319-14845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics