Advertisement

Nitride-Strengthened Reduced Activation Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Nitride-strengthened reduced activation ferritic/martensitic steels are anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Such steels with different manganese contents are designed based on the chemical composition of Eurofer97 steel but the carbon content is reduced to an extremely low level. The larger amount of vanadium-rich nitrides and more dissolved chromium in the matrix could be responsible for the similar strength to Eurofer97 steel. The steels have the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and display extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 % in wt%), the steel with high carbon content (0.012 % in wt%) has not only the higher strength but also the higher impact toughness and grain coarsening temperature. The complicated Al2O3 inclusions are responsible for the initiated cleavage fracture by acting as the critical cracks.

Keywords

Impact Toughness Cleavage Fracture Al2O3 Particle Al2O3 Inclusion Nitride Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe F, Taneike M, Sawada K (2007) Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Press Vessels Pip 84:3–12. doi: 10.1016/j.ijpvp.2006.09.003 CrossRefGoogle Scholar
  2. Baluc N, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Odette GR, van der Schaaf B, Yu J (2007) Status of reduced activation ferritic/martensitic steel development. J Nucl Mater 367–370:33–41. doi: 10.1016/j.jnucmat.2007.03.036 CrossRefGoogle Scholar
  3. Blach J, Falat L, Ševc P (2009) Fracture characteristics of thermally exposed 9Cr-1Mo steel after tensile and impact testing at room temperature. Eng Fail Anal 16:1397–1403. doi: 10.1016/j.engfailanal.2008.09.003 CrossRefGoogle Scholar
  4. Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12 %Cr steel. Acta Mater 58:669–679. doi: 10.1016/j.actamat.2009.09.045 CrossRefGoogle Scholar
  5. Danielsen HK, Hald J (2004) Z-phase in 9-12 %Cr steels. In: Viswanathan R, Gandy D, Coleman K (eds) Proceedings of the 4th international conference on advances in materials technology for fossil power plants. ASM International, Materials Park, OH, pp 999–1012Google Scholar
  6. Danielsen HK, Hald J (2006) Behaviour of Z phase in 9–12 %Cr steels. Energ Mater 1:49–57. doi: 10.1179/174892306X99732 CrossRefGoogle Scholar
  7. Danielsen HK, Hald J (2007) A thermodynamic model of the Z-phase Cr(V, Nb)N. CALPHAD 31:505–514. doi: 10.1016/j.calphad.2007.04.001 CrossRefGoogle Scholar
  8. Ghassemi-Armaki H, Chen RP, Maruyama K, Yoshizawa M, Igarashi M (2009) Static recovery of tempered lath martensite microstructures during long-term aging in 9-12 %Cr heat resistant steels. Mater Lett 63:2423–2425. doi: 10.1016/j.matlet.2009.08.024 CrossRefGoogle Scholar
  9. Hald J (2008) Microstructure and long-term creep properties of 9-12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi: 10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  10. Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater Sci Eng A 428:159–168. doi: 10.1016/j.msea.2006.04.116 CrossRefGoogle Scholar
  11. Hu X, Xiao N, Luo X, Li D (2009) Effects of delta-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10 %Cr ultra-supercritical steel. Acta Metall Sin 45:553–558Google Scholar
  12. Hu P, Yan W, Deng L, Sha W, Shan Y, Yang K (2010) Nitride-strengthened reduced activation ferritic/martensitic steels. Fusion Eng Des 85:1632–1637. doi: 10.1016/j.fusengdes.2010.04.066 CrossRefGoogle Scholar
  13. Jitsukawa S, Tamura M, van der Schaaf B, Klueh RL, Alamo A, Petersen C, Schirra M, Spaetig P, Odette GR, Tavassoli AA, Shiba K, Kohyama A, Kimura A (2002) Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H. J Nucl Mater 307–311:179–186. doi: 10.1016/S0022-3115(02)01075-9 CrossRefGoogle Scholar
  14. Jun HJ, Kang JS, Seo DH, Kang KB, Park CG (2006) Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Mater Sci Eng A 422:157–162. doi: 10.1016/j.msea.2005.05.008 CrossRefGoogle Scholar
  15. Kimura K, Toda Y, Kushima H, Sawada K (2010) Creep strength of high chromium steel with ferrite matrix. Int J Press Vessels Pip 87:282–288. doi: 10.1016/j.ijpvp.2010.03.016 CrossRefGoogle Scholar
  16. Klueh RL (2005) Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int Mater Rev 50:287–310. doi: 10.1179/174328005X41140 CrossRefGoogle Scholar
  17. Li Y, Huang Q, Wu Y (2006) Study on impact and tensile properties of CLAM steel. Nucl Phys Rev 23:151–154Google Scholar
  18. Li Y, Nagasaka T, Muroga T (2010) Long-term thermal stability of reduced activation ferritic/martensitic steels as structural materials of fusion blanket. Plasma Fusion Res 5:S1036. doi: 10.1585/pfr.5.S1036 CrossRefGoogle Scholar
  19. Lu Z, Faulkner RG, Riddle N, Martino FD, Yang K (2009) Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. J Nucl Mater 386–388:445–448. doi: 10.1016/j.jnucmat.2008.12.152 CrossRefGoogle Scholar
  20. Maruyama K, Sawada K, Koike JI (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi: 10.2355/isijinternational.41.641 CrossRefGoogle Scholar
  21. Mungole MN, Sahoo G, Bhargava S, Balasubramaniam R (2008) Recrystalised grain morphology in 9Cr 1Mo ferritic steel. Mater Sci Eng A 476:140–145. doi: 10.1016/j.msea.2007.04.105 CrossRefGoogle Scholar
  22. Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51:4847–4862. doi: 10.1016/S1359-6454(03)00324-0 CrossRefGoogle Scholar
  23. Poulachon G, Dessoly M, Lebrun JL, Le Calvez C, Prunet V, Jawahir IS (2002) Sulphide inclusion effects on tool-wear in high productivity milling of tool steels. Wear 253:339–356. doi: 10.1016/S0043-1648(02)00122-9 CrossRefGoogle Scholar
  24. Reith M, Schirra M, Falkenstein A, Graf P, Heger S, Kempe H, Lindau R, Zimmermann H (2003) EUROFER 97. Tensile, charpy, creep and structural tests. Wissenschaftliche Berichte FZKA 6911Google Scholar
  25. Ryu SH, Lee YS, Kong BO, Kim JT, Kwak DH, Nam SW, Vandenberghe B (2006) Effects of delta-ferrite phase on mechanical properties of P92 steel. In: Proceedings of the 3rd international conference on advanced structural steels. The Korean Institute of Metals and Materials, pp 563–569Google Scholar
  26. Sawada K, Kubo K, Abe F (2001) Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater Sci Eng A 319–321:784–787. doi: 10.1016/S0921-5093(01)00973-X CrossRefGoogle Scholar
  27. Sawada K, Kimura K Abe F (2003) Mechanical response of 9 %Cr heat-resistant martensitic steels to abrupt stress loading at high temperature. Mater Sci Eng A 358:52–58. doi: 10.1016/S0921-5093(03)00326-5
  28. Sawada K, Taneike M, Kimura K, Abe F (2004) Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ Int 44:1243–1249. doi: 10.2355/isijinternational.44.1243 CrossRefGoogle Scholar
  29. Sawada K, Kushima H, Kimura K, Tabuchi M (2007) TTP diagrams of Z phase in 9-12 %Cr heat-resistant steels. ISIJ Int 47:733–739. doi: 10.2355/isijinternational.47.733 CrossRefGoogle Scholar
  30. Shen YZ, Kim SH, Han CH, Cho HD, Ryu WS (2009) TEM investigations of MN nitride phases in a 9 % chromium ferritic/martensitic steel with normalization conditions for nuclear reactors. J Nucl Mater 384:48–55. doi: 10.1016/j.jnucmat.2008.10.005 CrossRefGoogle Scholar
  31. Sklenička V, Kuchařová K, Svoboda M, Kloc L, Buršík J, Kroupa A (2003) Long-term creep behavior of 9-12 %Cr power plant steels. Mater Charact 51:35–48. doi: 10.1016/j.matchar.2003.09.012 CrossRefGoogle Scholar
  32. Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35A:1255–1262. doi: 10.1007/s11661-004-0299-x CrossRefGoogle Scholar
  33. Tanigawa H, Shiba K, Möslang A, Stoller RE, Lindau R, Sokolov MA, Odette GR, Kurtz RJ, Jitsukaw S (2011) Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket. J Nucl Mater 417:9–15. doi: 10.1016/j.jnucmat.2011.05.023 CrossRefGoogle Scholar
  34. Yamada K, Igarashi M, Muneki S, Abe F (2003) Effect of Co addition on microstructure in high Cr ferritic steels. ISIJ Int 43:1438–1443. doi: 10.2355/isijinternational.43.1438 CrossRefGoogle Scholar
  35. Yan W, Shan YY, Yang K (2007) Influence of TiN inclusions on the cleavage fracture behavior of low-carbon microalloyed steels. Metall Mater Trans A 38A:1211–1222. doi: 10.1007/s11661-007-9161-2 CrossRefGoogle Scholar
  36. Yan W, Hu P, Deng L, Wang W, Sha W, Shan Y, Yang K (2012) Effect of carbon reduction on the toughness of 9CrWVTaN steels. Metall Mater Trans A 43A:1921–1933. doi: 10.1007/s11661-011-1046-8 CrossRefGoogle Scholar
  37. Yllmaz Ş, Ipek M, Celebi GF, Bindal C (2005) The effect of bond coat on mechanical properties of plasma sprayed Al2O3 and Al2O3–13 wt%TiO2 coatings on AISI 316L stainless steel. Vacuum 77:315–321. doi: 10.1016/j.vacuum.2004.11.004 CrossRefGoogle Scholar
  38. Yong Q (2006) The Second Phase in Steels. Metallurgical Industry Press, BeijingGoogle Scholar
  39. Yoshizawa M, Igarashi M (2007) Long-term creep deformation characteristics of advanced ferritic steels for USC power plants. Int J Press Vessels Pip 84:37–43. doi: 10.1016/j.ijpvp.2006.09.005 CrossRefGoogle Scholar
  40. Zhang L, Thomas BG (2003) State of the art in evaluation and control of steel cleanliness. ISIJ Int 43:271–291. doi: 10.2355/isijinternational.43.271 CrossRefGoogle Scholar
  41. Zhang L, Thomas BG, Wang X, Cai K (2002) Evaluation and control of steel cleanliness-review. In: 85th steelmaking conference proceedings. ISS-AIME, Warrendale, PA, pp 431–452Google Scholar
  42. Zhou Q, Zhang W, Yan W, Wang W, Sha W, Shan Y, Yang K (2012) Microstructure and mechanical properties of a nitride-strengthened reduced activation ferritic/martensitic steel. Metall Mater Trans A 43A:5079–5087. doi: 10.1007/s11661-012-1311-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations