Advertisement

Carbide-Strengthened Reduced Activation Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Higher strength and lower ductile-brittle transition temperature are obtained by vacuum induction melting (VIM), electroslag remelting (ESR) and vacuum consumable electrode melting (VAR) compared to VIM alone, because of the good solution of the tantalum in martensite. Processes of VIM+ESR+VAR decrease the size of laths and improve the distribution of non-metallic inclusions in the China Low Activation Martensitic (CLAM) steel. The effect of the rare earth element yttrium on the mechanical properties of 9Cr22WVTa low activation martensitic steel for fusion reactor is discussed. It is easy for yttrium to aggregate and form blocky yttrium-rich inclusions in the steel, which disrupts the continuity of the matrix and produces microcracks for fracture. The yttrium-rich inclusions are distributed along the rolling direction, which makes the fracture surface delaminated under tension and impact. The final part of the chapter analyses the effect of normalising and tempering heat treatment processes on the microstructure and mechanical properties of ton-scale CLAM steel. The normalising temperature decides the prior austenite grain size, while the tempering temperature influences the substructures. Compared with the normalising temperature, tempering temperature has larger effect on the mechanical properties of CLAM.

Keywords

Impact Toughness International Thermonuclear Experimental Reactor Vacuum Induction Melting Electroslag Remelt RAFM Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe F (2003) Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall Mater Trans A 34A:913–925. doi: 10.1007/s11661-003-0222-x CrossRefGoogle Scholar
  2. Agamennone R, Blum W, Gupta C, Chakravartty JK (2006) Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12 %Cr–2 %W–5 %Co steels. Acta Mater 54:3003–3014. doi: 10.1016/j.actamat.2006.02.038 CrossRefGoogle Scholar
  3. Baluc N, Schäublin R, Spätig P, Victoria M (2004) On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors. Nucl Fusion 44:56–61. doi: 10.1088/0029-5515/44/1/006 CrossRefGoogle Scholar
  4. Baluc N, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Odette GR, van der Schaaf B, Yu J (2007) Status of reduced activation ferritic/martensitic steel development. J Nucl Mater 367–370:33–41. doi: 10.1016/j.jnucmat.2007.03.036 CrossRefGoogle Scholar
  5. Dhua SK, Ray A, Sen SK, Prasad MS, Mishra KB, Jha S (2000) Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel. J Mater Eng Perform 9:700–709. doi: 10.1361/105994900770345584 CrossRefGoogle Scholar
  6. Huang Q, Li J, Chen Y (2004a) Study of irradiation effects in China low activation martensitic steel CLAM. J Nucl Mater 329–333:268–272. doi: 10.1016/j.jnucmat.2004.04.056 CrossRefGoogle Scholar
  7. Huang Q, Yu J, Wan F, Li J, Wu Y (2004b) The development of low activation martensitic steels for fusion reactor. Chin J Nucl Sci Eng 24(1):56–64Google Scholar
  8. Huang Q, Li C, Li Y, Chen M, Zhang M, Peng L, Zhu Z, Song Y, Gao S (2007) Progress in development of China Low Activation Martensitic steel for fusion application. J Nucl Mater 367–370:142–146. doi: 10.1016/j.jnucmat.2007.03.153 CrossRefGoogle Scholar
  9. Huang L, Hu X, Yan W, Xiao F, Shan Y, Yang K (2013) Effect of heat treatment processes on microstructure and mechanical properties of ton-scale China low activation martensitic steel. At Energ Sci Technol 47(z2):412–416Google Scholar
  10. ITER-FEAT Outline Design Report (2000). ITER Meeting, TokyoGoogle Scholar
  11. Jitsukawa S, Tamura M, van der Schaaf B, Klueh RL, Alamo A, Petersen C, Schirra M, Spaetig P, Odette GR, Tavassoli AA, Shiba K, Kohyama A, Kimura A (2002) Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H. J Nucl Mater 307–311:179–186. doi: 10.1016/S0022-3115(02)01075-9 CrossRefGoogle Scholar
  12. Kimura A, Kasada R, Kohyama A, Tanigawa H, Hirose T, Shiba K, Jitsukawa S, Ohtsuka S, Ukai S, Sokolov MA, Klueh RL, Yamamoto T, Odette GR (2007) Recent progress in US–Japan collaborative research on ferrite steels R&D. J Nucl Mater 367–370:60–67. doi: 10.1016/j.jnucmat.2007.03.013 CrossRefGoogle Scholar
  13. Klueh RL, Alexander DJ, Sokolov MA (2002a) Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5–9Cr–WVTaB steels. J Nucl Mater 304:139–152. doi: 10.1016/S0022-3115(02)00885-1 CrossRefGoogle Scholar
  14. Klueh RL, Gelles DS, Jitsukawa S, Kimura A, Odette GR, van der Schaaf B, Victoria M (2002b) Ferritic/martensitic steels—overview of recent results. J Nucl Mater 307–311:455–465. doi: 10.1016/S0022-3115(02)01082-6 CrossRefGoogle Scholar
  15. Klueh RL, Nelson AT (2007) Ferritic/martensitic steels for next generation reactors. J Nucl Mater 371:37–52. doi: 10.1016/j.jnucmat.2007.05.005 CrossRefGoogle Scholar
  16. Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550. doi: 10.1016/j.actamat.2006.08.046 CrossRefGoogle Scholar
  17. Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi: 10.2355/isijinternational.41.641 CrossRefGoogle Scholar
  18. Masuyama F (2001) History of power plants and progress in heat resistant steels. ISIJ Int 41:612–625. doi: 10.2355/isijinternational.41.612 CrossRefGoogle Scholar
  19. Reith M, Schirra M, Falkenstein A, Graf P, Heger S, Kempe H, Lindau R, Zimmermann H (2003) EUROFER 97. Tensile, charpy, creep and structural tests. Wissenschaftliche Berichte FZKA 6911Google Scholar
  20. Rojas D, Garcia J, Prat O, Agudo L, Carrasco C, Sauthoff G, Kaysser-Pyzalla AR (2011) Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12 %Cr heat resistant steel during creep at 650 °C. Mater Sci Eng A 528:1372–1381. doi: 10.1016/j.msea.2010.10.028 CrossRefGoogle Scholar
  21. Sawada K, Taneike M, Kimura K, Abe F (2003) In situ observation of recovery of lath structure in 9 % chromium creep resistant steel. Mater Sci Technol 19:739–742. doi: 10.1179/026708303225010696 CrossRefGoogle Scholar
  22. van der Schaaf B, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Möslang A, Odette GR (2000) Progress and critical issues of reduced activation ferritic/martensitic steel development. J Nucl Mater 283–287:52–59. doi: 10.1016/S0022-3115(00)00220-8 CrossRefGoogle Scholar
  23. van der Schaaf B, Tavassoli F, Fazio C, Rigal E, Diegele E, Lindau R, LeMarois G (2003) The development of EUROFER reduced activation steel. Fusion Eng Des 69:197–203. doi: 10.1016/S0920-3796(03)00337-5 CrossRefGoogle Scholar
  24. Wu Y (2007) Design status and development strategy of China liquid lithium–lead blankets and related material technology. J Nucl Mater 367–370:1410–1415. doi: 10.1016/j.jnucmat.2007.04.031 CrossRefGoogle Scholar
  25. Yan W, Hu P, Wang W, Zhao L, Shan Y, Yang K (2009) Effect of yttrium on mechanical properties of 9Cr-2WVTa low active martensite steel. Chin J Nucl Sci Eng 29(1):50–55Google Scholar
  26. Yang C, Yan W, Wang W, Shan Y, Yang K, Wu Y (2011) Changes of microstructure and mechanical property of the CLAM steel after long term aging at 600 °C. Acta Metall Sin 47:917–920. doi: 10.3724/SP.J.1037.2011.00156 Google Scholar
  27. Yang CG, Yan W, Huang LX, Shan YY, Yang K (2012) Influence of purification on mechanical properties of CLAM steel. In: Materials science and technology conference and exhibition, vol 1. Pittsburgh, PA, USA, pp 536–542Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations