Advertisement

Conventional Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

A change of the slope at about 660 °C on the dilatometry curve of 9Cr martensitic heat-resistant steel during heating process is explained by the large amount of carbonitride precipitation in the steel. The normalising temperature has little effect on mechanical properties of 10Cr steel at room temperature, while the tempering temperature has a greater effect. The toughness increases with increasing tempering temperature. Laves phase is one of the most significant precipitates in ferritic/martensitic heat-resistant steels. Co in the steel could accelerate the growth of Laves phase. Coalescence of the large Laves phase precipitates would lead to the brittle intergranular fracture. The nitride-strengthened martensitic heat-resistant steel is precipitation strengthened only by nitrides. In the latter part of the chapter, the effect of nitride precipitation behaviour on the impact toughness is discussed. When the tempering temperature is increased, a large amount of nitrides form in the matrix. The impact energy is greatly increased. The ductile-brittle transition temperature also decreases when the tempering temperature is increased from 650 to 750 °C. The nitride precipitation while increasing tempering temperature is responsible for the improved impact toughness.

Keywords

Impact Toughness Lave Phase Prior Austenite Maraging Steel 10Cr Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe F (2007) Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Eng Mater 345–346:569–572. doi: 10.4028/www.scientific.net/KEM.345-346.569 CrossRefGoogle Scholar
  2. Abe F, Semba H, Sakuraya T (2007a) Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel. Mater Sci Forum 539–543:2982–2987. doi: 10.4028/www.scientific.net/MSF.539-543.2982 CrossRefGoogle Scholar
  3. Abe F, Taneike M, Sawada K (2007b) Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Press Vessels Pip 84:3–12. doi: 10.1016/j.ijpvp.2006.09.003 CrossRefGoogle Scholar
  4. Aghajani A, Somsen Ch, Eggeler G (2009a) On the effect of long-term creep on the microstructure of a 12 % chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106. doi: 10.1016/j.actamat.2009.07.010 CrossRefGoogle Scholar
  5. Aghajani A, Richter F, Somsen C, Fries SG, Steinbach I, Eggeler G (2009b) On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12 % chromium tempered martensite ferritic steel. Scr Mater 61:1068–1071. doi: 10.1016/j.scriptamat.2009.08.031 CrossRefGoogle Scholar
  6. Cui J, Kim IS, Kang CY, Miyahara K (2001) Creep stress effect on the precipitation behavior of Laves phase in Fe-10 %Cr-6 %W alloys. ISIJ Int 41:368–371. doi: 10.2355/isijinternational.41.368 CrossRefGoogle Scholar
  7. Ennis PJ, Quadakkers JW (2002) The steam oxidation resistance of 9–12 %Cr steels. In: Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ (eds) Proceedings of the seventh Liege conference on materials for advanced power engineering. Liege, Belgium, pp 1131–1142Google Scholar
  8. Gustafson Å, Ågren J (2001) Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9 %Cr steel. ISIJ Int 41:356–360. doi: 10.2355/isijinternational.41.356 CrossRefGoogle Scholar
  9. Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi: 10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  10. Hu P, Yan W, Shan Y, Yang K (2009a) Slope change on dilation-temperature curve of 9Cr martensitic heat resistant steel. Heat Treat Met 34(4):52–55Google Scholar
  11. Hu P, Yan W, Sha W, Wang W, Guo Z, Shan Y, Yang K (2009b) Study on Laves phase in an advanced heat-resistant steel. Front Mater Sci Chin 3:434–441. doi: 10.1007/s11706-009-0063-7 CrossRefGoogle Scholar
  12. Huang Q, Li J, Chen Y (2004a) Study of irradiation effects in China low activation martensitic steel CLAM. J Nucl Mater 329–333:268–272. doi: 10.1016/j.jnucmat.2004.04.056 CrossRefGoogle Scholar
  13. Huang Q, Yu J, Wan F, Li J, Wu Y (2004b) The development of low activation martensitic steels for fusion reactor. Chin J Nucl Sci Eng 24(1):56–64Google Scholar
  14. Ishitsuka T, Inoue Y, Ogawa H (2004) Effect of silicon on the steam oxidation resistance of a 9 %Cr heat resistant steel. Oxid Met 61:125–142. doi: 10.1023/B:OXID.0000016280.81734.3f CrossRefGoogle Scholar
  15. Kapoor R, Kumar L, Batra IS (2003) A dilatometric study of the continuous heating transformations in 18wt. % Ni maraging steel of grade 350. Mater Sci Eng A 352:318–324. doi: 10.1016/S0921-5093(02)00934-6 CrossRefGoogle Scholar
  16. Klueh RL, Nelson AT (2007) Ferritic/martensitic steels for next generation reactors. J Nucl Mater 371:37–52. doi: 10.1016/j.jnucmat.2007.05.005 CrossRefGoogle Scholar
  17. Lee JS, Ghassemi-Armaki H, Maruyama K, Muraki T, Asahi H (2006) Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel. Mater Sci Eng A 428:270–275. doi: 10.1016/j.msea.2006.05.010 CrossRefGoogle Scholar
  18. Masuyama F (2001) History of power plants and progress in heat resistant steels. ISIJ Int 41:612–625. doi: 10.2355/isijinternational.41.612 CrossRefGoogle Scholar
  19. Mungole MN, Sahoo G, Bhargava S, Balasubramaniam R (2008) Recrystalised grain morphology in 9Cr 1Mo ferritic steel. Mater Sci Eng A 476:140–145. doi: 10.1016/j.msea.2007.04.105 CrossRefGoogle Scholar
  20. Sawada K, Kimura K, Abe F (2003) Mechanical response of 9 %Cr heat-resistant martensitic steels to abrupt stress loading at high temperature. Mater Sci Eng A 358:52–58. doi: 10.1016/S0921-5093(03)00326-5
  21. Sawada K, Taneike M, Kimura K, Abe F (2004) Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ Int 44:1243–1249. doi: 10.2355/isijinternational.44.1243 CrossRefGoogle Scholar
  22. Sawada K, Kushima H, Kimura K (2006) Z-phase formation during creep and aging in 9–12 %Cr heat resistant steels. ISIJ Int 46:769–775. doi: 10.2355/isijinternational.46.769 CrossRefGoogle Scholar
  23. Shen YZ, Kim SH, Cho HD, Han CH, Ryu WS (2009) Precipitate phases of a ferritic/martensitic 9 %Cr steel for nuclear power reactors. Nucl Eng Des 239:648–654. doi: 10.1016/j.nucengdes.2008.12.018 CrossRefGoogle Scholar
  24. Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35A:1255–1262. doi: 10.1007/s11661-004-0299-x CrossRefGoogle Scholar
  25. Toda Y, Iijima M, Kushima H, Kimura K, Abe F (2005) Effects of Ni and heat treatment on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ Int 45:1747–1753. doi: 10.2355/isijinternational.45.1747 CrossRefGoogle Scholar
  26. Wang H, Gu X, Feng H (2003) Development of supercritical thermal power boiler materials. Shandong Electr Pow (1):73–75Google Scholar
  27. Weisenburger A, Heinzel A, Müller G, Muscher H, Rousanov A (2008) T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions. J Nucl Mater 376:274–281. doi: 10.1016/j.jnucmat.2008.02.026 CrossRefGoogle Scholar
  28. Yan W, Hu P, Zhao L, Shan Y, Yang K (2009) Heat treatment of a new type heat-resistant steel NF12. Heat Treat Met 34(9):59–61Google Scholar
  29. Yang F, Li W, Ren Y (2004) Alloy steel used for supercritical and ultra supercritical pressure boiler. Electr Equip 5(10):41–46Google Scholar
  30. Zhang X (2004) Material options for supercritical/super-supercritical boilers. Pow Equip 18(5):307–312. doi: 10.3969/j.issn.1671-086X.2004.05.015 Google Scholar
  31. Zhang W, Yan W, Sha W, Wang W, Zhou Q, Shan Y, Yang K (2012) The impact toughness of a nitride-strengthened martensitic heat resistant steel. Sci China Technol Sci 55:1858–1862. doi: 10.1007/s11431-012-4903-9 CrossRefGoogle Scholar
  32. Zhao Z (2000) The new materials for supercritical and ultra-supercritical power plant units. Mater Mech Eng 24(6):1–4. doi: 10.3969/j.issn.1000-3738.2000.06.001 Google Scholar
  33. Zhou R, Fan C (2005) Review of material research and material selection for ultra-supercritical power plants. Electr Pow 38(8):41–47. doi: 10.3969/j.issn.1004-9649.2005.08.012 Google Scholar
  34. Zhou R, Fan C, Li Y (2006) Current situation and development of production of heat-resistant materials for power generation. Steel Pipe 35(1):19–25. doi: 10.3969/j.issn.1001-2311.2006.01.004 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations