Introduction to Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Part of the Engineering Materials book series (ENG.MAT.)


This chapter introduces the various topics included in the book, in subsequent chapters. As the research book assumes that the reader has graduate-level materials science knowledge, this is not discussed in the introduction chapter here. Instead, the introduction focuses on different types of steels, including conventional heat-resistant steels, silicon-bearing high chromium heat-resistant steels and nitride-strengthened reduced activation heat-resistant steels. Topics relevant to service conditions and behaviour of steels follow, in thermal ageing, microstructural stability and creep. Finally, the hot deformation processing of steels is discussed. The chapter can be read independently of the rest of the book, but, with its wide referencing, it is also useful in assisting in reading the in-depth chapters that follow and being referred back to. Directly referring to later chapters and sections helps with the latter.


Lave Phase Creep Strength Martensitic Steel Oxide Dispersion Strengthened Minimum Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe F (2001) Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A 319–321:770–773. doi: 10.1016/S0921-5093(00)02002-5 CrossRefGoogle Scholar
  2. Abe F (2004a) Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels. Mater Sci Eng A 387–389:565–569. doi: 10.1016/j.msea.2004.01.057 CrossRefGoogle Scholar
  3. Abe F (2004b) Bainitic and martensitic creep-resistant steels. Curr Opin Solid St M 8:305–311. doi: 10.1016/j.cossms.2004.12.001 CrossRefGoogle Scholar
  4. Abe F (2005) Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metall Mater Trans A 36A:321–332. doi: 10.1007/s11661-005-0305-y CrossRefGoogle Scholar
  5. Abe F (2008) Stress to produce a minimum creep rate of 10−5 %/h and stress to cause rupture at 105 h for ferritic and austenitic steels and superalloys. Int J Press Vessels Pip 85:99–107. doi: 10.1016/j.ijpvp.2007.06.005 CrossRefGoogle Scholar
  6. Abe F, Semba H, Sakuraya T (2007a) Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel. Mater Sci Forum 539–543:2982–2987. doi: 10.4028/ CrossRefGoogle Scholar
  7. Abe F, Taneike M, Sawada K (2007b) Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Press Vessels Pip 84:3–12. doi: 10.1016/j.ijpvp.2006.09.003 CrossRefGoogle Scholar
  8. Baluc N (2009) Material degradation under DEMO relevant neutron fluences. Phys Scr T 138:014004. doi: 10.1088/0031-8949/2009/T138/014004 CrossRefGoogle Scholar
  9. Baluc N, Abe K, Boutard JL, Chernov VM, Diegele E, Jitsukawa S, Kimura A, Klueh RL, Kohyama A, Kurtz RJ, Lasser R, Matsui H, Möslang A, Muroga T, Odette GR, Tran MQ, van der Schaaf B, Wu Y, Yu J, Zinkle SJ (2007a) Status of R&D activities on materials for fusion power reactors. Nucl Fusion 47:S696–S717. doi: 10.1088/0029-5515/47/10/S18 CrossRefGoogle Scholar
  10. Baluc N, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Odette GR, van der Schaaf B, Yu J (2007b) Status of reduced activation ferritic/martensitic steel development. J Nucl Mater 367–370:33–41. doi: 10.1016/j.jnucmat.2007.03.036 CrossRefGoogle Scholar
  11. Bendick W, Gabrel J, Hahn B, Vandenberghe B (2007) New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application. Int J Press Vessels Pip 84:13–20. doi: 10.1016/j.ijpvp.2006.09.002 CrossRefGoogle Scholar
  12. Danielsen HK, Hald J (2004) Z-phase in 9–12 %Cr steels. In: Viswanathan R, Gandy D, Coleman K (eds) Proceedings of the 4th international conference on advances in materials technology for fossil power plants. ASM International, Materials Park, OH, pp 999–1012Google Scholar
  13. Danielsen HK, Hald J (2009) Tantalum-containing Z-phase in 12 %Cr martensitic steels. Scr Mater 60:811–813. doi: 10.1016/j.scriptamat.2009.01.025 CrossRefGoogle Scholar
  14. de Carlan Y, Murugananth M, Sourmail T, Bhadeshia HKDH (2004) Design of new Fe-9CrWV reduced-activation martensitic steels for creep properties at 650 °C. J Nucl Mater 329:238–242. doi: 10.1016/j.jnucmat.2004.04.017 CrossRefGoogle Scholar
  15. de Castro V, Leguey T, Muñoz A, Monge MA, Fernández P, Lancha AM, Pareja R (2007) Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. J Nucl Mater 367–370:196–201. doi: 10.1016/j.jnucmat.2007.03.146 CrossRefGoogle Scholar
  16. Dimmler G, Weinert P, Cerjak H (2008) Extrapolation of short-term creep rupture data—the potential risk of over-estimation. Int J Press Vessels Pip 85:55–62. doi: 10.1016/j.ijpvp.2007.06.003 CrossRefGoogle Scholar
  17. Dyson B (2000) Use of CDM in materials modeling and component creep life prediction. J Press Vessel Technol 122:281–296. doi: 10.1115/1.556185 CrossRefGoogle Scholar
  18. Ehrlich K (2001) Materials research towards a fusion reactor. Fusion Eng Des 56–57:71–82. doi: 10.1016/S0920-3796(01)00236-8 CrossRefGoogle Scholar
  19. Faulkner RG, Williams JA, Sanchez EG, Marshall AW (2003) Influence of Co, Cu and W on microstructure of 9 %Cr steel weld metals. Mater Sci Technol 19:347–354. doi: 10.1179/026708303225009652 CrossRefGoogle Scholar
  20. Fernández P, Lancha AM, Lapeña J, Hernández-Mayoral M (2001) Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer’97 on as-received condition. Fusion Eng Des 58–59:787–792. doi: 10.1016/S0920-3796(01)00563-4 CrossRefGoogle Scholar
  21. Fernández P, Lancha AM, Lapeña J, Serrano M, Hernández-Mayoral M (2002) Metallurgical properties of reduced activation martensitic steel Eurofer’97 in the as-received condition and after thermal ageing. J Nucl Mater 307–311:495–499. doi: 10.1016/S0022-3115(02)01013-9 CrossRefGoogle Scholar
  22. Fernández AI, Uranga P, López B, Rodriguez-Ibabe JM (2003) Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater Sci Eng A 361:367–376. doi: 10.1016/S0921-5093(03)00562-8 CrossRefGoogle Scholar
  23. Ghassemi-Armaki H, Chen RP, Maruyama K, Igarashi M (2011) Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 pct Cr ferritic steels. Metall Mater Trans A 42A:3084–3094. doi: 10.1007/s11661-011-0726-8 CrossRefGoogle Scholar
  24. Golpayegani A, Andrén HO, Danielsen H, Hald J (2008) A study on Z-phase nucleation in martensitic chromium steels. Mater Sci Eng A 489:310–318. doi: 10.1016/j.msea.2007.12.022 CrossRefGoogle Scholar
  25. Gustafson Å, Ågren J (2001) Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9 %Cr steel. ISIJ Int 41:356–360. doi: 10.2355/isijinternational.41.356 CrossRefGoogle Scholar
  26. Hadraba H, Dlouhy I (2009) Effect of thermal ageing on the impact fracture behaviour of Eurofer’97 steel. J Nucl Mater 386–388:564–568. doi: 10.1016/j.jnucmat.2008.12.319 CrossRefGoogle Scholar
  27. Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi: 10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  28. Hasegawa T, Abe YR, Tomita Y, Maruyama N, Sugiyama M (2001) Microstructural evolution during creep test in 9Cr–2W–V–Ta steels and 9Cr–1Mo–V–Nb steels. ISIJ Int 41:922–929. doi: 10.2355/isijinternational.41.922 CrossRefGoogle Scholar
  29. Helis L, Toda Y, Hara T, Miyazaki H, Abe F (2009) Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater Sci Eng A 510–511:88–94. doi: 10.1016/j.msea.2008.04.131 CrossRefGoogle Scholar
  30. Hong SC, Lee KS (2002) Influence of deformation induced ferrite transformation on grain refinement of dual phase steel. Mater Sci Eng A 323:148–159. doi: 10.1016/S0921-5093(01)01359-4 CrossRefGoogle Scholar
  31. Hu X (2010) Research on solid-state phase transition characteristics and application of 9–12 %Cr steel for ultra super-critical use. Ph.D. dissertation, Institute of Metal Research, Chinese Academy of Sciences, ShenyangGoogle Scholar
  32. Hu X, Xiao N, Luo X, Li D (2009a) Effects of δ-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10 %Cr ultra-supercritical steel. Acta Metall Sin 45:553–558Google Scholar
  33. Hu P, Yan W, Sha W, Wang W, Guo Z, Shan Y, Yang K (2009b) Study on Laves phase in an advanced heat-resistant steel. Front Mater Sci Chin 3:434–441. doi: 10.1007/s11706-009-0063-7 CrossRefGoogle Scholar
  34. Hu P, Yan W, Deng L, Sha W, Shan Y, Yang K (2010) Nitride-strengthened reduced activation ferritic/martensitic steels. Fusion Eng Des 85:1632–1637. doi: 10.1016/j.fusengdes.2010.04.066 CrossRefGoogle Scholar
  35. Huang Q, Li J, Chen Y (2004a) Study of irradiation effects in China low activation martensitic steel CLAM. J Nucl Mater 329–333:268–272. doi: 10.1016/j.jnucmat.2004.04.056 CrossRefGoogle Scholar
  36. Huang Q, Li J, Wu Y, Yu J, Wan F (2004b) The development of low activation martensitic steels for fusion reactor. Chin J Nucl Sci Eng 24(1):56–64Google Scholar
  37. Huang Q, Li C, Li Y, Chen M, Zhang M, Peng L, Zhu Z, Song Y, Gao S (2007) Progress in development of China Low Activation Martensitic steel for fusion application. J Nucl Mater 367–370:142–146. doi: 10.1016/j.jnucmat.2007.03.153 CrossRefGoogle Scholar
  38. Huang L, Hu X, Yang C, Yan W, Xiao F, Shan Y, Yang K (2013) Influence of thermal aging on microstructure and mechanical properties of CLAM steel. J Nucl Mater 443:479–483. doi: 10.1016/j.jnucmat.2013.08.008 CrossRefGoogle Scholar
  39. Huntz AM, Bague V, Beauplé G, Haut C, Sévérac C, Lecour P, Longaygue X, Ropital F (2003) Effect of silicon on the oxidation resistance of 9 %Cr steels. Appl Surf Sci 207:255–275. doi: 10.1016/S0169-4332(02)01505-2 CrossRefGoogle Scholar
  40. Ishitsuka T, Inoue Y, Ogawa H (2004) Effect of silicon on the steam oxidation resistance of a 9 %Cr heat resistant steel. Oxid Met 61:125–142. doi: 10.1023/B:OXID.0000016280.81734.3f CrossRefGoogle Scholar
  41. Jitsukawa S, Tamura M, van der Schaaf B, Klueh RL, Alamo A, Petersen C, Schirra M, Spaetig P, Odette GR, Tavassoli AA, Shiba K, Kohyama A, Kimura A (2002) Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H. J Nucl Mater 307:179–186. doi: 10.1016/S0022-3115(02)01075-9 CrossRefGoogle Scholar
  42. Jitsukawa S, Suzuki K, Okubo N, Ando M, Shiba K (2009) Irradiation effects on reduced activation ferritic/martensitic steels-tensile, impact, fatigue properties and modelling. Nucl Fusion 49:115006. doi: 10.1088/0029-5515/49/11/115006 CrossRefGoogle Scholar
  43. Kadoya Y, Dyson BF, McLean M (2002) Microstructural stability during creep of Mo- or W-bearing 12Cr steels. Metall Mater Trans A 33A:2549–2557. doi: 10.1007/s11661-002-0375-z CrossRefGoogle Scholar
  44. Kimura A, Kasada R, Kohyama A, Tanigawa H, Hirose T, Shiba K, Jitsukawa S, Ohtsuka S, Ukai S, Sokolov MA, Klueh RL, Yamamoto T, Odette GR (2007) Recent progress in US–Japan collaborative research on ferritic steels R&D. J Nucl Mater 367–370:60–67. doi: 10.1016/j.jnucmat.2007.03.013 CrossRefGoogle Scholar
  45. Kimura K, Toda Y, Kushima H, Sawada K (2010) Creep strength of high chromium steel with ferrite matrix. Int J Press Vessels Pip 87:282–288. doi: 10.1016/j.ijpvp.2010.03.016 CrossRefGoogle Scholar
  46. Klimenkov M, Lindau R, Möslang A (2009) New insights into the structure of ODS particles in the ODS-Eurofer alloy. J Nucl Mater 386–388:553–556. doi: 10.1016/j.jnucmat.2008.12.174 CrossRefGoogle Scholar
  47. Klueh RL (2008) Reduced-activation steels: future development for improved creep strength. J Nucl Mater 378:159–166. doi: 10.1016/j.jnucmat.2008.05.010 CrossRefGoogle Scholar
  48. Klueh RL, Cheng ET, Grossbeck ML, Bloom EE (2000) Impurity effects on reduced-activation ferritic steels developed for fusion applications. J Nucl Mater 280:353–359. doi: 10.1016/S0022-3115(00)00060-X CrossRefGoogle Scholar
  49. Klueh RL, Hashimoto N, Maziasz PJ (2007) New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment. J Nucl Mater 367:48–53. doi: 10.1016/j.jnucmat.2007.03.001 CrossRefGoogle Scholar
  50. Knežević V, Balun J, Sauthoff G, Inden G, Schneider A (2008) Design of martensitic/ferritic heat-resistant steels for application at 650 °C with supporting thermodynamic modelling. Mater Sci Eng A 477:334–343. doi: 10.1016/j.msea.2007.05.047 CrossRefGoogle Scholar
  51. Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550. doi: 10.1016/j.actamat.2006.08.046 CrossRefGoogle Scholar
  52. Kurtz RJ, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh RL, Odette GR, Petersen C, Sokolov MA, Spätig P, Rensman JW (2009) Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J Nucl Mater 386–388:411–417. doi: 10.1016/j.jnucmat.2008.12.323 CrossRefGoogle Scholar
  53. Lee JS, Ghassemi-Armaki H, Maruyama K, Muraki T, Asahi H (2006) Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel. Mater Sci Eng A 428:270–275. doi: 10.1016/j.msea.2006.05.010 CrossRefGoogle Scholar
  54. Li Y, Huang Q, Wu Y, Nagasaka T, Muroga T (2007) Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1. J Nucl Mater 367–370:117–121. doi: 10.1016/j.jnucmat.2007.03.012 CrossRefGoogle Scholar
  55. Lindau R, Möslang A, Schirra M, Schlossmacher P, Klimenkov M (2002) Mechanical and microstructural properties of a hipped RAFM ODS-Steel. J Nucl Mater 307–311:769–772. doi: 10.1016/S0022-3115(02)01045-0 CrossRefGoogle Scholar
  56. Lindau R, Möslang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, Tavassoli AAF, Cayron C, Lancha AM, Fernandez P, Baluc N, Schäublin R, Diegele E, Filacchioni G, Rensman JW, van der Schaaf B, Lucon E, Dietz W (2005) Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fusion Eng Des 75–79:989–996. doi: 10.1016/j.fusengdes.2005.06.186 CrossRefGoogle Scholar
  57. Lucon E, Vandermeulen W (2009) Overview of the tensile properties of EUROFER in the unirradiated and irradiated conditions. J Nucl Mater 386–388:254–256. doi: 10.1016/j.jnucmat.2008.12.109 CrossRefGoogle Scholar
  58. Marchattiwar A, Sarkar A, Chakravartty JK, Kashyap BP (2013) Dynamic recrystallization during hot deformation of 304 austenitic stainless steel. J Mater Eng Perform 22:2168–2175. doi: 10.1007/s11665-013-0496-0 Google Scholar
  59. Marmy P, Oliver BM (2003) High strain fatigue properties of F82H ferritic–martensitic steel under proton irradiation. J Nucl Mater 318:132–142. doi: 10.1016/S0022-3115(03)00120-X CrossRefGoogle Scholar
  60. Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi: 10.2355/isijinternational.41.641 CrossRefGoogle Scholar
  61. Masuyama F (2001) History of power plants and progress in heat resistant steels. ISIJ Int 41:612–625. doi: 10.2355/isijinternational.41.612 CrossRefGoogle Scholar
  62. Materna-Morris EI, Rieth M, Ehrlich K (2000) Mechanical properties and microstructure of HFR-irradiated ferritic/martensitic low-activation alloys. In: Hamilton ML, Kumar AS, Rosinski ST, Grossbeck ML (eds) Effects of radiation on materials: 19th international symposium. American Society for Testing and Materials, W Conshohocken, pp 597–611Google Scholar
  63. McQueen HJ, Ryan ND (2002) Constitutive analysis in hot working. Mater Sci Eng A 322:43–63. doi: 10.1016/S0921-5093(01)01117-0 CrossRefGoogle Scholar
  64. Miyata K, Sawaragi Y (2001) Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels. ISIJ Int 41:281–289. doi: 10.2355/isijinternational.41.281 CrossRefGoogle Scholar
  65. Momeni A, Dehghani K (2011) Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater Sci Eng A 528:1448–1454. doi: 10.1016/j.msea.2010.11.020 CrossRefGoogle Scholar
  66. Olier P, Bougault A, Alamo A, de Carlan Y (2009) Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties. J Nucl Mater 386–388:561–563. doi: 10.1016/j.jnucmat.2008.12.177 CrossRefGoogle Scholar
  67. Panait CG, Bendick W, Fuchsmann A, Gourgues-Lorenzon A-F, Besson J (2010) Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600 °C. Int J Press Vessels Pip 87:326–335. doi: 10.1016/j.ijpvp.2010.03.017 CrossRefGoogle Scholar
  68. Porollo SI, Dvoriashin AM, Konobeev YuV, Garner FA (2004) Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60. J Nucl Mater 329–333:314–318. doi: 10.1016/j.jnucmat.2004.04.310 CrossRefGoogle Scholar
  69. Ryu SH, Lee YS, Kong BO, Kim JT, Kwak DH, Nam SW, Vandenberghe B (2006) Effects of delta-ferrite phase on mechanical properties of P92 steel. In: Proceedings of the 3rd international conference on advanced structural steels. The Korean Institute of Metals and Materials, pp 563–569Google Scholar
  70. Sawada K, Kubo K, Abe F (2001) Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater Sci Eng A 319–321:784–787. doi: 10.1016/S0921-5093(01)00973-X CrossRefGoogle Scholar
  71. Sawada K, Taneike M, Kimura K, Abe F (2003) In situ observation of recovery of lath structure in 9 % chromium creep resistant steel. Mater Sci Technol 19:739–742. doi: 10.1179/026708303225010696 CrossRefGoogle Scholar
  72. Sawada K, Taneike M, Kimura K, Abe F (2004) Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ Int 44:1243–1249. doi: 10.2355/isijinternational.44.1243 CrossRefGoogle Scholar
  73. Sawada K, Kushima H, Kimura K, Tabuchi M (2006) Creep strength degradation by Z phase formation in 9–12 %Cr heat resistant steels. In: Proceedings of the 3rd international conference on advanced structural steels. The Korean Institute of Metals and Materials, pp 532–537Google Scholar
  74. Sawada K, Kushima H, Kimura K, Tabuchi M (2007) TTP diagrams of Z phase in 9–12 %Cr heat-resistant steels. ISIJ Int 47:733–739. doi: 10.2355/isijinternational.47.733 CrossRefGoogle Scholar
  75. Sawada K, Fujitsuka M, Tabuchi M, Kimura K (2009a) Effect of oxidation on the creep rupture life of ASME T23 steel. Int J Press Vessels Pip 86:693–698. doi: 10.1016/j.ijpvp.2009.03.001 CrossRefGoogle Scholar
  76. Sawada K, Tabuchia M, Kimura K (2009b) Creep strength degradation of ASME P23/T23 steels. Mater Sci Eng A 513–514:128–137. doi: 10.1016/j.msea.2009.02.027 CrossRefGoogle Scholar
  77. Schaeublin R, Leguey T, Spätig P, Baluc N, Victoria M (2002) Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J Nucl Mater 307–311:778–782. doi: 10.1016/S0022-3115(02)01193-5 CrossRefGoogle Scholar
  78. Shu G (2004) Research and application of improved domestic T/P91 steels on the technology and microstructure and mechanical properties. Ph.D. dissertation, Wuhan UniversityGoogle Scholar
  79. Taneike M, Abe F, Sawada K (2003) Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature 424:294–296. doi: 10.1038/nature01740 CrossRefGoogle Scholar
  80. Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35A:1255–1262. doi: 10.1007/s11661-004-0299-x CrossRefGoogle Scholar
  81. Thomas Paul V, Saroja S, Vijayalakshmi M (2008) Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures. J Nucl Mater 378:273–281. doi: 10.1016/j.jnucmat.2008.06.033 CrossRefGoogle Scholar
  82. Toda Y, Seki K, Kimura K, Abe F (2003) Effects of W and Co on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ Int 43:112–118. doi: 10.2355/isijinternational.43.112 CrossRefGoogle Scholar
  83. Toda Y, Tohyama H, Kushima H, Kimura K, Abe F (2005) Improvement in creep strength of precipitation strengthened 15Cr ferritic steel by controlling carbon and nitrogen contents. JSME Int J Ser A 48:35–40. doi: 10.1299/jsmea.48.35 CrossRefGoogle Scholar
  84. Tu S, Xuan F, Wang W (2009) Some critical issues in creep and fracture assessment at high temperature. Acta Metall Sin 45:781–787Google Scholar
  85. Vaillant JC, Vandenberghe B, Hahn B, Heuser H, Jochum C (2008) T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience. Int J Press Vessels Pip 85:38–46. doi: 10.1016/j.ijpvp.2007.06.011 CrossRefGoogle Scholar
  86. van der Schaaf B, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Möslang A, Odette GR (2000) Progress and critical issues of reduced activation ferritic/martensitic steel development. J Nucl Mater 283:52–59. doi: 10.1016/S0022-3115(00)00220-8 CrossRefGoogle Scholar
  87. von Hartrott P, Holmström S, Caminada S, Pillot S (2009) Life-time prediction for advanced low alloy steel P23. Mater Sci Eng A 510–511:175–179. doi: 10.1016/j.msea.2008.04.117 CrossRefGoogle Scholar
  88. Wang Y, Mayer KH, Scholz A, Berger C, Chilukuru H, Durst K, Blum W (2009) Development of new 11 %Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650 °C. Mater Sci Eng A 510–511:180–184. doi: 10.1016/j.msea.2008.04.116 CrossRefGoogle Scholar
  89. Wang P, Lu SP, Xiao NM, Li DZ, Li YY (2010) Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater Sci Eng A 527:3210–3216. doi: 10.1016/j.msea.2010.01.085 CrossRefGoogle Scholar
  90. Wang SS, Peng DL, Chang L, Hui XD (2013) Enhanced mechanical properties induced by refined heat treatment for 9Cr–0.5Mo–1.8W martensitic heat resistant steel. Mater Des 50:174–180. doi: 10.1016/j.matdes.2013.01.072 CrossRefGoogle Scholar
  91. Whittaker MT, Wilshire B (2010) Creep and creep fracture of 2.25 Cr–1.6 W steels (Grade 23). Mater Sci Eng A 527:4932–4938. doi: 10.1016/j.msea.2010.04.033 CrossRefGoogle Scholar
  92. Xia ZX, Zhang C, Huang QY, Liu SJ, Li ZD, Yang ZG (2011) Effect of TaC particles dissolution on grain coarsening in reduced activation steels. J Iron Steel Res Int 18(9):47–52. doi: 10.1016/S1006-706X(12)60033-8 CrossRefGoogle Scholar
  93. Yagi K (2008) Acquisition of long-term creep data and knowledge for new applications. Int J Press Vessels Pip 85:22–29. doi: 10.1016/j.ijpvp.2007.06.001 CrossRefGoogle Scholar
  94. Yamada K, Igarashi M, Muneki S, Abe F (2003) Effect of Co addition on microstructure in high Cr ferritic steels. ISIJ Int 43:1438–1443. doi: 10.2355/isijinternational.43.1438 CrossRefGoogle Scholar
  95. Yan P, Liu Z, Bao H, Weng Y, Liu W (2014) Effect of tempering temperature on the toughness of 9Cr–3W–3Co martensitic heat resistant steel. Mater Des 54:874–879. doi: 10.1016/j.matdes.2013.09.017 CrossRefGoogle Scholar
  96. Yang F, Zhang Y, Ren Y, Li W (2006) Welding of new heat-resistant steels. China Electric Power Press, BeijingGoogle Scholar
  97. Yin F, Jung W (2009) Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant steels. Metall Mater Trans A 40A:302–309. doi: 10.1007/s11661-008-9716-x CrossRefGoogle Scholar
  98. Yin F, Jung W, Chung S (2007) Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. Scr Mater 57:469–472. doi: 10.1016/j.scriptamat.2007.05.034 CrossRefGoogle Scholar
  99. Yong Q (2006) The second phase in steels. Metallurgical Industry Press, BeijingGoogle Scholar
  100. Yoshizawa M, Igarashi M (2007) Long-term creep deformation characteristics of advanced ferritic steels for USC power plants. Int J Press Vessels Pip 84:37–43. doi: 10.1016/j.ijpvp.2006.09.005 CrossRefGoogle Scholar
  101. Yu G, Nita N, Baluc N (2005) Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels. Fusion Eng Des 75–79:1037–1041. doi: 10.1016/j.fusengdes.2005.06.311 CrossRefGoogle Scholar
  102. Zhang W, Yan W, Sha W, Wang W, Zhou Q, Shan Y, Yang K (2012) The impact toughness of a nitride-strengthened martensitic heat resistant steel. Sci China Technol Sci 55:1858–1862. doi: 10.1007/s11431-012-4903-9 CrossRefGoogle Scholar
  103. Zhang W-F, Li X-L, Sha W, Yan W, Wang W, Shan Y-Y, Yang K (2014) Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel. Mater Sci Eng A 590:199–208. doi: 10.1016/j.msea.2013.10.020 CrossRefGoogle Scholar
  104. Zhong Q, Zhao Z (2006) Fractures. Higher Education Press, BeijingGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations