Skip to main content

Abstract

A thermodynamic model is a set of equations that permit the estimation of pure component and mixture properties. In order to represent chemical processes, their modifications, equipment or new designs, the selection of a thermodynamic model that represents accurately the physical properties of the substances interacting in such process is mandatory (Satyro 2008). Nonetheless, the importance of some properties depends on the goal of the simulation itself. For instance, if the objective is the sizing of heat exchange equipment, transport properties are vital, since the affect the equipment dynamic. Therefore, if there is a substantial error in the modeling of those properties, problems in the performance of the equipment can be evidenced after its sizing, because the real behavior of the apparatus differs from the simulated one (Agarwal et al. 2001a, b; Finlayson 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ecopetrol.com.co

  2. 2.

    http://www.promigas.com

References

  • Abrams DS and Prausnitz JM (1975) Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE Journal 21(1):116–128

    Article  CAS  Google Scholar 

  • Agarwal R, Li Y-K, Santollani O, Satyro MA (2001a) Uncovering the realities of simulation part I. Chem Eng Prog 97(5):42–52

    CAS  Google Scholar 

  • Agarwal R, Li Y-K, Santollani O, Satyro MA (2001b) Uncovering the realities of simulation part II. Chem Eng Prog 97(6):64–72

    CAS  Google Scholar 

  • Aspen Technology Inc (2006) Aspen process engineering webinar. Aspen HYSYS Property Packages

    Google Scholar 

  • Aspen Technology Inc (2001) Aspen polymers plus 11.1. user’s guide. Aspen Technology Inc, Cambridge

    Google Scholar 

  • Carlson EC (1996) Don’t Gamble with Physical properties for simulations. Chem Eng Prog 92:35–46

    CAS  Google Scholar 

  • Dimian AC, Bildea C (2014) Integrated design and simulation of chemical processes. Comput Aided Chem Eng 35:201–251

    Article  Google Scholar 

  • Finlayson B (2006) Equations of state. In: Finlayson B (ed) Introduction to chemical engineering computing. Wiley-Interscience, New York, pp 7–29

    Chapter  Google Scholar 

  • Gomis V, Font A, Pedraza R, Saquete MD (2005) Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the system water + ethanol + cyclohexane. Fluid Phase Equilib 235(1):7–10

    Article  CAS  Google Scholar 

  • Linstrom P and Mallard W (2010) NIST Chemistry WebBook, NIST Standard Reference Database Number 69

    Google Scholar 

  • Meyer R. Metzger J (1966) C. R. Acad. Sci. Paris, Ser. C, 263:1333

    Google Scholar 

  • Orbey H, Stanley S (1998) Modeling vapor-liquid equilibria: cubic equations of state and their mixing rules, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Perry RH (1992) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  • Renon H and Prausnitz JM (1968) Local composition in thermodynamic excessfunctions for liquid mixtures. AIChE Journal 14:135–44

    Article  CAS  Google Scholar 

  • Sada E, Morisue T, Miyahara K (1975) Salt effects on vapor-liquid equilibrium of tetrahydrofuran-water system. J Chem Eng Data 20(3):283–287

    Article  CAS  Google Scholar 

  • Satyro MA (2008) Thermodynamics and the simulation engineer. Chem Prod Process Model 3(1):1–41

    Google Scholar 

  • Soulie MA, Goursot P, Peneloux A, Metzger J (1969) Proprietes Thermochimiques du Thiazole. J. Chim. Phys. Phys. Chim. Biol. 66:603–610

    CAS  Google Scholar 

  • Soujanya J, Satyavathi B, Vittal Prasad TE (2010) Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures. J Chem Thermodyn 42(5):621–624

    Article  CAS  Google Scholar 

  • Weast RC and Grasselli JG, ed(s). (1989) CRC Handbook of Data on Organic Compounds, 2nd Editon, CRC Press, Inc., Boca Raton, FL, 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaves, I.D.G., López, J.R.G., Zapata, J.L.G., Robayo, A.L., Niño, G.R. (2016). Thermodynamic and Property Models. In: Process Analysis and Simulation in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14812-0_2

Download citation

Publish with us

Policies and ethics