Computational Understanding and Manipulation of Symmetries

  • Attila Egri-Nagy
  • Chrystopher L. Nehaniv
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8955)

Abstract

For natural and artificial systems with some symmetry structure, computational understanding and manipulation can be achieved without learning by exploiting the algebraic structure. This algebraic coordinatization is based on a hierarchical (de)composition method. Here we describe this method and apply it to permutation puzzles. Coordinatization yields a structural understanding, not just solutions for the puzzles. In the case of the Rubik’s Cubes, different solving strategies correspond to different decompositions.

Keywords

permutation puzzle wreath product coordinatization cascade decomposition Rubik’s Cube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann (2004)Google Scholar
  2. 2.
    Cameron, P.J.: Permutation Groups. London Mathematical Society (1999)Google Scholar
  3. 3.
    Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer (1996)Google Scholar
  4. 4.
    Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic analysis of computation in biochemical reactions. BioSystems 94(1-2), 126–134 (2008)CrossRefGoogle Scholar
  5. 5.
    Egri-Nagy, A., Mitchell, J.D., Nehaniv, C.L.: SgpDec: Cascade (De)Compositions of finite transformation semigroups and permutation groups. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 75–82. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Egri-Nagy, A., Nehaniv, C.L.: Algebraic Hierarchical Decomposition of Finite State Automata: Comparison of Implementations for Krohn-Rhodes Theory. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Egri-Nagy, A., Nehaniv, C.L., Mitchell, J.D.: SgpDec – software package for hierarchical decompositions and coordinate systems, Version 0.7+ (2013), http://sgpdec.sf.net
  8. 8.
    Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press (1976)Google Scholar
  9. 9.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books (2003)Google Scholar
  10. 10.
    The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.5 (2014), http://www.gap-system.org
  11. 11.
    Goguen, J.: An introduction to algebraic semiotics, with application to user interface design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Goguen, J.A., Malcolm, G.: Software Engineering with OBJ: Algebraic Specification in Action. Springer (2000)Google Scholar
  13. 13.
    Hall, M.: The Theory of Groups. The Macmillan Company, New York (1959)Google Scholar
  14. 14.
    Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press (1982)Google Scholar
  15. 15.
    Jones, H.F.: Group Theory, Representations and Physics. Adam Hilger (1990)Google Scholar
  16. 16.
    Joyner, D.: Adventures in Group Theory. John Hopkins University Press (2002)Google Scholar
  17. 17.
    Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the algebraic theory of machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and Semigroups, ch. 5, pp. 81–125. Academic Press (1968)Google Scholar
  18. 18.
    Laird, J., Newell, A., Rosenbloom, P.: SOAR: An architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, S.Y.W., Blandford, A., Cairns, P., Young, R.M.: Post-completion errors in problem solving. In: Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society, Hillsdale, NJ, Lawrence Erlbaum Associates (2005)Google Scholar
  20. 20.
    Nehaniv, C.L.: Algebraic models for understanding: Coordinate systems and cognitive empowerment. In: Proc. Second International Conference on Cognitive Technology: Humanizing the Information Age, pp. 147–162. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  21. 21.
    Nehaniv, C.L.: Algebra and formal models of understanding. In: Ito, M. (ed.) Semigroups, Formal Languages and Computer Systems, vol. 960, pp. 145–154. Kyoto Research Institute for Mathematics Sciences, RIMS Kokyuroku (1996)Google Scholar
  22. 22.
    Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)Google Scholar
  23. 23.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer (2000)Google Scholar
  24. 24.
    Raman, K.V.: Group Theory and Its Applications to Chemistry. Tata McGraw-Hill (2004)Google Scholar
  25. 25.
    Reder, L.M., Schunn, C.D.: Metacognition does not imply awareness: Strategy choice is governed by implicit learning and memory. In: Reder, L.M. (ed.) Implicit Memory and Metacognition. Erlbaum, Hillsdale (1996)Google Scholar
  26. 26.
    Rhodes, J.: Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific Press (2009), Foreword by Hirsch, M.W. edited by Nehaniv, C.L. (Original version: University of California at Berkeley, Mathematics Library, 1971)Google Scholar
  27. 27.
    Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1995)Google Scholar
  28. 28.
    Wiggs, C.C., Taylor, C.J.: Mechanical puzzle marketed as Rubik’s Clock. Patent EP0322085 (1989)Google Scholar
  29. 29.
    Zhang, J., Norman, D.A.: A representational analysis of numeration systems. Cognition 57, 271–295 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Attila Egri-Nagy
    • 1
    • 2
  • Chrystopher L. Nehaniv
    • 1
  1. 1.Centre for Computer Science and Informatics ResearchUniversity of HertfordshireHatfieldUnited Kingdom
  2. 2.Centre for Research in Mathematics,School of Computing, Engineering and MathematicsUniversity of Western SydneyPenrithAustralia

Personalised recommendations