Skip to main content

What physical effects are involved?

  • Chapter
  • First Online:
  • 971 Accesses

Abstract

In the previous chapters, attention was given to deriving complicated wave equations or evolution equations. One should certainly ask: “why equations”? Ian Stewart [230] asks this question and gives the answer that “equations are the lifeblood of mathematics, science and technology”, and adds that “… they reveal deep and beautiful patterns and regularities”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abe, K., Satofuka, N.: Recurrence of initial state of nonlinear ion waves. Phys. Fluids 24(6), 1045–1048 (1981)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J.: Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  3. Ablowitz, M., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  4. Andrianov, I.V., Danishevskyy, V.V., Ryzhkov, O.I., Weichert, D.: Dynamic homogenization and wave propagation in a nonlinear 1D composite material. Wave Motion 50(2), 271–281 (2013)

    Article  MathSciNet  Google Scholar 

  5. Askar, A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1986)

    Book  Google Scholar 

  6. Benton, E.R., Platzmann, G.W.: A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math. 30, 195–212 (1972)

    MATH  MathSciNet  Google Scholar 

  7. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  8. Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstructured solids. Mech. Res. Commun. 37(6), 531–534 (2010)

    Article  MATH  Google Scholar 

  9. Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)

    Article  MATH  Google Scholar 

  10. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)

    Article  MATH  Google Scholar 

  11. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11), 1981–1990 (2013)

    Article  Google Scholar 

  12. Bhatnagar, P.L.: Nonlinear Waves in One-Dimensional Dispersive Systems, vol. 142. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  13. Braun, M., Randrüüt, M.: On periodic waves governed by the extended Korteweg-de Vries equation. Proc. Estonian Acad. Sci. 59(2), 113–138 (2010)

    Article  Google Scholar 

  14. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  15. Brillouin, L.: Wave Propagation and Group Velocity. Academic, New York (1960)

    MATH  Google Scholar 

  16. Caenepeel, S., Malfliet, W.: Internal structure of the two-soliton solution of the KdV equation. Wave Motion 7(4), 299–305 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Christov, I.C.: Hidden solitons in the Zabusky–Kruskal experiment: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 82(6), 1069–1078 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Christov, C.I., Maugin, G.A., Porubov, A.V.: On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mecanique 335(9), 521–535 (2007)

    Article  MATH  Google Scholar 

  19. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9(3), 225–236 (1951)

    MATH  Google Scholar 

  20. Dey, B., Khare, A., Kumar, C.N.: Stationary solitons of the fifth order KdV-type equations and their stabilization. Phys. Lett. A 223(6), 449–452 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dogariu, A., Kuzmich, A., Wang, L.: Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A63(5), 053806 (2001)

    Article  Google Scholar 

  22. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  23. Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids. Pitman, London (1983)

    MATH  Google Scholar 

  24. Engelbrecht, J.: Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  25. Engelbrecht, J.: On the paper by Zabusky and Kruskal. In: Schiehlen, W., Wijngaarden, L., (eds.) Mechanics at the Turn of the Century, pp. 13–14. Shaker Verlag, Aachen (2000)

    Google Scholar 

  26. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3-1, 43–82 (2015), doi: 10.2140/memocs 2015.3.43

    Google Scholar 

  27. Engelbrecht, J., Maugin, G.: Deformation waves in thermoelastic media and the concept of internal variables. Arch. Appl. Mech. 66(3), 200–207 (1996)

    Article  MATH  Google Scholar 

  28. Engelbrecht, J., Salupere, A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015114 (2005)

    Article  Google Scholar 

  29. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)

    Article  Google Scholar 

  30. Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-destructive Evaluation and Ultrasonics, pp. 29–47. Springer, New York (2007)

    Google Scholar 

  31. Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717–726 (2011)

    Article  MathSciNet  Google Scholar 

  32. Engelbrecht, J., Tamm, K., Peets, T.: On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. 14(1), 159–167 (2015)

    Article  Google Scholar 

  33. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  34. Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  35. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  36. Giovine, P., Oliveri, F.: Dynamics and wave propagation in dilatant granular materials. Meccanica 30(4), 341–357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Goda, K.: Numerical studies on recurrence of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 42(3), 1040–1046 (1977)

    Article  MathSciNet  Google Scholar 

  38. Grimshaw, R., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D 132(1–2), 40–62 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hansen, P., Lonngren, K.: On the prediction of the number of solitons excited by an arbitrary potential: an observation from inverse scattering. Physica D 68(1), 12–17 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hopf, E.: The partial differential equation u t + uu x  = μ u xxx . Commun. Pure Appl. Math. 3, 201–230 (1950)

    Google Scholar 

  41. Huang, G., Sun, C.: A higher-order continuum model for elastic media with multiphased microstructure. Mech. Adv. Mater. Struct. 15(8), 550–557 (2008)

    Article  Google Scholar 

  42. Ilison, O.: Solitons and solitary waves in media with higher order dispersive and nonlinear effects. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2005)

    Google Scholar 

  43. Ilison, O., Salupere, A.: On the propagation of solitary pulses in microstructured materials. Chaos Solitons Fractals 29(1), 202–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ilison, L., Salupere, A.: Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math. Comput. Simul. 79(11), 3314–3327 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Janno, J., Engelbrecht, J.: Waves in microstructured solids: inverse problems. Wave Motion 43(1), 1–11 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Janno, J., Engelbrecht, J.: Microstructured Materials: Inverse Problems. Springer, Berlin (2011)

    Book  Google Scholar 

  47. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, vol. 1. Pitman, Boston (1982)

    MATH  Google Scholar 

  48. Jeffrey, A., Mohamad, M.: Travelling wave solutions to a higher order KdV equation. Chaos Solitons Fractals 1(2), 187–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kalda, J.: Periodic solutions of the Korteweg-de Vries equation and the number of eigenvalues. J. Phys. Soc. Jpn. 44(1), 88–95 (1995)

    MATH  MathSciNet  Google Scholar 

  50. Karpman, V.: Nonlinear Waves in Dispersive Media. Nauka Press, Moscow (1973, in Russian)

    Google Scholar 

  51. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33(1), 260–264 (1972)

    Article  Google Scholar 

  52. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)

    Article  Google Scholar 

  53. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)

    Google Scholar 

  54. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  55. Kruskal, M.D.: An ODE to a PDE: glories of the KdV equation. An appreciation of the equation on its 100th birthday! In: Hazewinkel, M., Capel, H.W., Jager, E.M.d. (eds.) Proceedings of KdV’95, pp. 127–132. Springer, Berlin (1995)

    Google Scholar 

  56. Lamb, G.L., Jr.: Elements of Soliton Theory, vol. 1, p. 29. Wiley, New York (1980)

    Google Scholar 

  57. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  58. Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)

    Article  MATH  Google Scholar 

  59. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  60. Maugin, G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38(5), 341–349 (2011)

    Article  MATH  Google Scholar 

  61. Maugin, G.A., Christov, C.: Nonlinear duality between elastic waves and quasi-particles in microstructured solids. Proc. Estonian Acad. Sci. Phys. Math. 46(1–2), 78–84 (1997)

    MATH  Google Scholar 

  62. Metrikine, A.: On causality of the gradient elasticity models. J. Sound Vib. 297, 727–742 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: part 1: generic formulation. Eur. J. Mech. 21, 555–572 (2002)

    Article  MATH  Google Scholar 

  64. Meyers, R. (ed.): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    MATH  Google Scholar 

  65. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  66. Nagashima, H.: Chaos in a nonlinear wave equation with higher order dispersion. Phys. Lett. A 105, 439–442 (1984)

    Article  MathSciNet  Google Scholar 

  67. Newman, W.I., Campbell, D.K., Hyman, J.M.: Identifying coherent structures in nonlinear wave propagation. Chaos 1(1), 77–94 (1991)

    Article  MATH  Google Scholar 

  68. Nunziato, J.W., Walsh, E.K., Schuler, R.W., Barker, L.M.: Wave propagation in nonlinear viscoelastic solids. In: Flügge, S. (ed.) Encyclopedia of Physics, pp. 1–108. Springer, Berlin (1974)

    Google Scholar 

  69. Okrouhlík, M.: The quest for truth, particularly in mechanics. Estonian J. Eng. 19, 253–272 (2013)

    Article  Google Scholar 

  70. Oliveri, F.: Nonlinear wave propagation in a non-diffusive model of bubbly liquids. Acta Mech. 83(3–4), 135–148 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  71. Papargyri-Beskou, S., Polyzos, D., Beskos, D.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)

    Article  MATH  Google Scholar 

  72. Peets, T.: Dispersion analysis of wave motion in microstructured solids. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2011)

    Google Scholar 

  73. Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. Wave Motion 45(4), 471–480 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Peets, T., Kartofelev, D., Tamm, K., Engelbrecht, J.: Waves in microstructured solids and negative group velocity. EPL 103, 16001 (2013)

    Article  Google Scholar 

  75. Peipman, T., Valdek, U., Engelbrecht, J.: Nonlinear two-dimensional longitudinal and shear waves in solids. Acustica 76(2), 84–94 (1992)

    MATH  Google Scholar 

  76. Pichugin, A., Askes, H., Tyas, A.: Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J. Sound Vib. 313(3), 858–874 (2008)

    Article  Google Scholar 

  77. Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  78. Porubov, A., Pastrone, F.: Non-linear bell-shaped and kink-shaped strain waves in microstructured solids. Int. J. Non-Linear Mech. 39(8), 1289–1299 (2004)

    Article  MATH  Google Scholar 

  79. Porubov, A.V.: Localization of Nonlinear Strain Waves. Fizmatlit, Moscow (2009, in Russian)

    Google Scholar 

  80. Randrüüt, M., Braun, M.: On one-dimensional solitary waves in microstructured solids. Wave Motion 47(4), 217–230 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  81. Randrüüt, M., Salupere, A., Engelbrecht, J.: On modelling wave motion in microstructured solids. Proc. Estonian Acad. Sci. 58(4), 241–256 (2009)

    Article  MATH  Google Scholar 

  82. Russell, J.S.: Report on Waves. British Association for the Advancement of Science, London (1845)

    Google Scholar 

  83. Salupere, A.: On the application of the pseudospectral method for solving the Korteweg-de Vries equation. Proc. Estonian Acad. Sci. Phys. Math. 44(1), 73–87 (1995)

    MATH  MathSciNet  Google Scholar 

  84. Salupere, A.: The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 301–333. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  85. Salupere, A., Maugin, G.A., Engelbrecht, J.: Korteweg-de Vries soliton detection from a harmonic input. Phys. Lett. A 192, 5–8 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  86. Salupere, A., Maugin, G., Engelbrecht, J., Kalda, J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1), 49–66 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  87. Salupere, A., Engelbrecht, J., Maugin, G.: Solitonic structures in KdV-based higher-order systems. Wave Motion 34(1), 51–61 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  88. Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part I — emergence of ensembles. Chaos Solitons Fractals 14(9), 1413–1424 (2002)

    Google Scholar 

  89. Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part II — periodical patterns of trajectories. Chaos Solitons Fractals 15(1), 29–40 (2003)

    Google Scholar 

  90. Salupere, A., Engelbrecht, J., Ilison, O., Ilison, L.: On solitons in microstructured solids and granular materials. Math. Comput. Simul. 69(5), 502–513 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  91. Salupere, A., Tamm, K., Engelbrecht, J.: Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech. 43(3), 201–208 (2008)

    Article  MATH  Google Scholar 

  92. Satsuma, J., Ablowitz, M.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  93. Schroeder, M., Fractals, C.: Power Laws. Freeman, New York (1991)

    MATH  Google Scholar 

  94. Scott, A. (ed.): Encyclopedia of Nonlinear Science. Taylor and Francis, New York (2005)

    MATH  Google Scholar 

  95. Scott, N.: Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies. IMA J. Appl. Math. 72, 1–14 (2007)

    MathSciNet  Google Scholar 

  96. Stewart, I.: 17 Equations that Changed the World. Profile Books, London (2013)

    Google Scholar 

  97. Weissert, T.P.: The Genesis of Simulation in Dynamics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  98. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  99. Yoshimura, K., Watanabe, S.: Chaotic behaviour of nonlinear evolution equation with fifth order dispersion. J. Phys. Soc. Jpn. 51, 3028–3035 (1982)

    Article  MathSciNet  Google Scholar 

  100. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelbrecht, j. (2015). What physical effects are involved?. In: Questions About Elastic Waves. Springer, Cham. https://doi.org/10.1007/978-3-319-14791-8_6

Download citation

Publish with us

Policies and ethics