Skip to main content

What are internal variables? A. Berezovski answers

  • Chapter
  • First Online:
Book cover Questions About Elastic Waves
  • 1198 Accesses

Abstract

Internal structures (microstructures) appear in solids at different length scales. Generally speaking, their influence on the macromotion can be understood and measured on the macrolevel. However, “there is no unique answer to the question how the microstructure influence can be accounted for in a continuum mechanical model” [132]. In addition, thermodynamical constraints should be taken into account, which is not obvious in many theories. In the previous section, heterogeneity is linked to the real microstructure, like “cells” in the Mindlin theory. One possibility to bring thermodynamics directly into modelling of dynamical phenomena is provided by the concept of internal variables. The idea of internal variables can be traced back to P. Duhem, P. Bridgman and J. Kestin (see historical overview in [161]). A contemporary presentation of the formalism of internal variables is presented by Maugin [154] and Maugin and Muschik [163].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askes, H., Aifantis, E.C.: Gradient elasticity theories in statics and dynamics a unification of approaches. Int. J. Fract. 139(2), 297–304 (2006)

    Article  MATH  Google Scholar 

  2. Askes, H., Metrikine, A.V., Pichugin, A.V., Bennett, T.: Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Philos. Mag. 88, 3415–3443 (2008)

    Article  Google Scholar 

  3. Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstructured solids. Mech. Res. Commun. 37(6), 531–534 (2010)

    Article  MATH  Google Scholar 

  4. Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)

    Article  MATH  Google Scholar 

  5. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)

    Article  MATH  Google Scholar 

  6. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Thermoelasticity with dual internal variables. J. Therm. Stresses 34(5–6), 413–430 (2011)

    Article  Google Scholar 

  7. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11), 1981–1990 (2013)

    Article  Google Scholar 

  8. Berezovski, A., Engelbrecht, J., Ván, P.: Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech. 84(9–11), 1249–1261 (2014)

    Article  Google Scholar 

  9. Billingham, J., King, A.C.: Wave Motion. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

    Book  MATH  Google Scholar 

  11. Chandrasekharaiah, D.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  12. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 63(3), 567–613 (1967)

    Google Scholar 

  13. Engelbrecht, J., Berezovski, A.: Internal structures and internal variables in solids. J. Mech. Mater. Struct. 7(10), 983–996 (2012)

    Article  Google Scholar 

  14. Eringen, A.: Microcontinuum Field Theories. Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  15. Gross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  16. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92(3), 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirchner, N., Steinmann, P.: A unifying treatise on variational principles for gradient and micromorphic continua. Philos. Mag. 85(33–35), 3875–3895 (2005)

    Article  Google Scholar 

  19. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2001)

    Article  MathSciNet  Google Scholar 

  20. Maugin, G.: Infernal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)

    Article  Google Scholar 

  21. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  22. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75(10–12), 723–738 (2006)

    Article  MATH  Google Scholar 

  23. Maugin, G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38(5), 341–349 (2011)

    Article  MATH  Google Scholar 

  24. Maugin, G.: Continuum Mechanics Through the Twentieth Century: The Concise Historical Perspective. Springer, Dordrecht (2013)

    Book  Google Scholar 

  25. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19(3), 217–249 (1994)

    MATH  Google Scholar 

  26. Mielke, A.: Formulation of thermoelastic dissipative material behavior using generic. Contin. Mech. Thermodyn. 23, 233–256 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  28. Muschik, W.: Aspects of Non-equilibrium Thermodynamics. World Scientific, Singapore (1990)

    Google Scholar 

  29. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  30. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)

    Book  MATH  Google Scholar 

  31. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelbrecht, J. (2015). What are internal variables? A. Berezovski answers. In: Questions About Elastic Waves. Springer, Cham. https://doi.org/10.1007/978-3-319-14791-8_4

Download citation

Publish with us

Policies and ethics