Skip to main content

How to model waves?

  • Chapter
  • First Online:
Questions About Elastic Waves
  • 978 Accesses

Abstract

In Chap. 2, questions about the essence of waves were asked and answers given. On the other hand, every wave needs a medium to propagate. That is why it is essential to start with a description of media (materials). As mentioned in the Introduction, the focus in this book is on waves in solids. Except some comparative examples, waves in fluids or gases are excluded as well as electromagnetic waves. Also, we shall use the concept of continua. If for some reason or another, a discrete model (lattice model) is the starting point, continualization will be used in order to get to a continuous model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrianov, I., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. vol. 2010 (2010). ID 986242

    Google Scholar 

  2. Askar, A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1986)

    Book  Google Scholar 

  3. Askes, H., Aifantis, E.C.: Gradient elasticity theories in statics and dynamics a unification of approaches. Int. J. Fract. 139(2), 297–304 (2006)

    Article  MATH  Google Scholar 

  4. Askes, H., Metrikine, A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42(1), 187–202 (2005)

    Article  MATH  Google Scholar 

  5. Askes, H., Metrikine, A.V., Pichugin, A.V., Bennett, T.: Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Philos. Mag. 88, 3415–3443 (2008)

    Article  Google Scholar 

  6. Bell, J.F.: The experimental foundations of solid mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1973)

    Google Scholar 

  7. Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstructured solids. Mech. Res. Commun. 37(6), 531–534 (2010)

    Article  MATH  Google Scholar 

  8. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)

    Article  Google Scholar 

  9. Bland, D.R.: Wave Theory and Applications. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  10. Born, M.: On vibrations in space lattice. Phys. Zeit 13, 297–309 (1912)

    MATH  Google Scholar 

  11. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  12. Cantrell, J.H.: Acoustic nonlinearity parameters and higher-order elastic constants for crystals. Proc. IOA 11, 445–452 (1989)

    Google Scholar 

  13. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

    Book  MATH  Google Scholar 

  14. Casasso, A., Pastrone, F.: Wave propagation in solids with vectorial microstructures. Wave Motion 47(6), 358–369 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Charlotte, M., Truskinovsky, L.: Lattice dynamics from a continuum viewpoint. J. Mech. Phys. Solids 60(8), 1508–1544 (2012)

    Article  Google Scholar 

  16. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory (ii). Balance laws. Physica A 322, 377–392 (2003)

    Article  MATH  Google Scholar 

  17. Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41(1), 61–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239–249 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    Google Scholar 

  20. dell’Isola, F., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids (2014 online), doi:10.1177/1081286513509811

    Google Scholar 

  21. Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids. Pitman, London (1983)

    MATH  Google Scholar 

  22. Engelbrecht, J.: Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  23. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3-1, 43–82 (2015), doi: 10.2140/memocs 2015.3.43

    Google Scholar 

  24. Engelbrecht, J., Pastrone, F.: Waves in microstructured solids with nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Math. 52(1), 12–20 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)

    Article  Google Scholar 

  26. Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-destructive Evaluation and Ultrasonics, pp. 29–47. Springer, New York (2007)

    Google Scholar 

  27. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  28. Eringen, A.: Microcontinuum Field Theories. Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  29. Eringen, A., Maugin, G.: Electrodynamics of Continua I, II. Springer, New York (1990)

    Book  Google Scholar 

  30. Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro–elastic solids – I & II. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)

    MathSciNet  Google Scholar 

  31. Hand, L.N., Finch, J.D.: Analytical Mechanics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  32. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  33. Kartofelev, D., Stulov, A.: Propagation of deformation waves in wool felt. Acta Mech. 225, 3103–3113 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kirchner, N., Steinmann, P.: A unifying treatise on variational principles for gradient and micromorphic continua. Philos. Mag. 85(33–35), 3875–3895 (2005)

    Article  Google Scholar 

  35. Kröner, E.: Interrelations between various branches of continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, Proceedings of IUTAM Symposium, pp. 330–340. Springer, Berlin (1968)

    Chapter  Google Scholar 

  36. Li, Y., Ramesh, K., Chin, E.: Dynamic characterization of layered and graded structures under impulsive loading. Int. J. Solids Struct. 38(34), 6045–6061 (2001)

    Article  MATH  Google Scholar 

  37. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  38. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Functionally graded material: an overview. In: Proceedings of WCE 2012, pp. 1593–1597 (2012)

    Google Scholar 

  39. Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)

    Article  MATH  Google Scholar 

  40. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2001)

    Article  MathSciNet  Google Scholar 

  41. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  42. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  43. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75(10–12), 723–738 (2006)

    Article  MATH  Google Scholar 

  44. Maugin, G.: Continuum Mechanics Through the Twentieth Century: The Concise Historical Perspective. Springer, Dordrecht (2013)

    Book  Google Scholar 

  45. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: part 1: generic formulation. Eur. J. Mech. 21, 555–572 (2002)

    Article  MATH  Google Scholar 

  46. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  47. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, London (1993)

    MATH  Google Scholar 

  48. Papargyri-Beskou, S., Polyzos, D., Beskos, D.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)

    Article  MATH  Google Scholar 

  49. Pichugin, A., Askes, H., Tyas, A.: Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J. Sound Vib. 313(3), 858–874 (2008)

    Article  Google Scholar 

  50. Polyzos, D., Fotiadis, D.: Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)

    Article  Google Scholar 

  51. Reddy, J.N.: Principles of Continuum Mechanics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  52. Rice, J.R.: Solid Mechanics. Harvard University, Cambridge (2010). http://esag.harvard.edu/rice/

  53. Schrödinger, E.: Zur dynamik elastisch gekoppelter Punktsysteme. Annalen der Physik 349(14), 916–934 (1914)

    Article  Google Scholar 

  54. Seeger, A.: Historical note: on the simulation of dispersive wave propagation by elasticity models. Philos. Mag. 90(9), 1101–1104 (2010)

    Article  Google Scholar 

  55. Stulov, A.: Dynamic behavior and mechanical features of wool felt. Acta Mech. 169, 13–21 (2004)

    Article  MATH  Google Scholar 

  56. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics III/3. Springer, Berlin (1965)

    Google Scholar 

  57. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics III/1. Springer, Berlin (1960)

    Google Scholar 

  58. Zeng, X., Chen, Y., Lee, J.D.: Determining material constants in nonlocal micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 44(18), 1334–1345 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelbrecht, J. (2015). How to model waves?. In: Questions About Elastic Waves. Springer, Cham. https://doi.org/10.1007/978-3-319-14791-8_3

Download citation

Publish with us

Policies and ethics