Abstract
In this chapter we present and discuss in some detail problems that we encountered in the course of our work. Some of them have already been mentioned in previous chapters, others have appeared under different disguises and a few are new. The contents of the sections may freely overlap.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D. Amir, J. Lindenstrauss, The structure of weakly compact sets in Banach spaces. Ann. Math. 88, 35–46 (1968)
S.A. Argyros, R. Haydon, A hereditarily indecomposable \(\mathcal{L}_{\infty }\)-space that solves the scalar-plus-compact problem. Acta Math. 206, 1–54 (2011)
S.A. Argyros, J.M.F. Castillo, A.S. Granero, M. Jiménez, J.P. Moreno, Complementation and embeddings of c 0(I) in Banach spaces. Proc. Lond. Math. Soc. 85, 742–772 (2002)
S.A. Argyros, I. Gasparis, P. Motakis. On the structure of separable \(\mathcal{L}_{\infty }\)-spaces. arXiv: 1504.08223v1 (2015)
A. Avilés, Y. Moreno, Automorphisms in spaces of continuous functions on Valdivia compacta. Top. Appl. 155, 2027–2030 (2008)
A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, Banach spaces of universal disposition. J. Funct. Anal. 261, 2347–2361 (2011)
A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno. On separably injective Banach spaces. Adv. Math. 234, 192–216 (2013)
A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, On ultraproducts of Banach space of type \(\mathcal{L}_{\infty }\). Fundam. Math. 222, 195–212 (2013)
W.G. Bade, Complementation problems for the Baire classes. Pac. J. Math. 45, 1–11 (1973)
S. Baratella, S.-A. Ng, Isometry games in Banach spaces. Bull. Belg. Math. Soc. Simon Stevin 15, 509–521 (2008)
Y. Benyamini, J. Lindenstrauss, A predual of ℓ 1 which is not isomorphic to a C(K) space. Isr. J. Math. 13, 246–254 (1972)
Y. Benyamini, M.E. Rudin, M. Wage, Continuous images of weakly compact subsets of Banach spaces. Pac. J. Math. 70(2), 309–324 (1977)
J. Bourgain, A result on operators on C[0, 1]. J. Oper. Theory 3, 275–289 (1980)
J. Bourgain, New Classes of \(\mathcal{L}^{p}\) -Spaces. Lecture Notes in Mathematics, vol. 889 (Springer, Berlin, 1981)
J. Bourgain, F. Delbaen, A class of special \(\mathcal{L}_{\infty }\) spaces. Acta Math. 145, 155–176 (1980)
J. Bourgain, G. Pisier, A construction of \(\mathcal{L}_{\infty }\)-spaces and related Banach spaces. Bol. Soc. Bras. Mat. 14, 109–123 (1983)
C. Brech, On the density of Banach spaces C(K) with the Grothendieck property. Proc. Am. Math. Soc. 134, 3653–3663 (2006)
F. Cabello Sánchez, J.M.F. Castillo, Uniform boundedness and twisted sums of Banach spaces. Houst. J. Math. 30, 523–536 (2004)
F. Cabello Sánchez, J.M.F. Castillo, N.J. Kalton, D.T. Yost, Twisted sums with C(K)-spaces. Trans. Am. Math. Soc. 355, 4523–4541 (2003)
L. Candido, P. Koszmider, On complemented copies of c 0(ω 1) in C(K n) spaces. arXiv: 1501.01785v2 (2015)
J.M.F. Castillo, M. González, Three-Space Problems in Banach Space Theory. Lecture Notes in Mathematical, vol. 1667 (Springer, Berlin, 1997)
J.M.F. Castillo, Y. Moreno, On the Lindenstrauss-Rosenthal theorem. Isr. J. Math. 140, 253–270 (2004)
J.M.F. Castillo, A. Plichko, Banach spaces in various positions. J. Funct. Anal. 259, 2098–2138 (2010)
J.M.F. Castillo, M. Simões, Property (V ) still fails the 3-space property. Extracta Math. 27, 5–11 (2012)
J.M.F. Castillo, J. Suárez, On \(\mathcal{L}_{\infty }\)-envelopes of Banach spaces. J. Math. Anal. Appl. 394, 152–158 (2012)
P. Cembranos, C(K, X) contains a complemented copy of c 0. Proc. Am. Math. Soc. 91, 556–558 (1984)
F.K. Dashiell Jr., Isomorphism problems for the Baire classes. Pac. J. Math. 52, 29–43 (1974)
F.K. Dashiell Jr., Nonweakly compact operators from order-Cauchy complete C(S) lattices, with application to Baire classes. Trans. Am. Math. Soc. 266, 397–413 (1981)
F.K. Dashiell Jr., J. Lindenstrauss, Some examples concerning strictly convex norms on C(K) spaces. Isr. J. Math. 16, 329–342 (1973)
E.K. van Douwen, The integers and topology, in Handbook of Set-Theoretic Topology (Elsevier, New York, 1984)
A. Dow, J. Vermeer, Extremally disconnected spaces, subspaces and retracts. Top. Appl. 50, 263–282 (1993)
A. Dow, H. Jumila, J. Pelant, Chain condition and weak topologies. Top. Appl. 156, 1327–1344 (2009)
P.N. Dowling, On ℓ ∞ -subspaces of Banach spaces. Collect. Math. 51, 255–260 (2000)
V.P. Fonf, J. Lindenstrauss, R.R. Phelps, Infinite dimensional convexity, in Handbook of the Geometry of Banach Spaces, vol. 1, ed. by W.B. Johnson, J. Lindenstrauss (North-Holland, Amsterdam, 2001), pp. 599–670
E. Galego, J. Hagler, Copies of c 0(Γ) in C(K, ;X) spaces. Proc. Am. Math. Soc. 140, 3843–3852 (2012)
I. Gasparis, Operators on C[0, F1] preserving copies of asymptotic ℓ 1 spaces. Math. Ann. 333, 831–858 (2005)
I. Gasparis, On a problem of H.P. Rosenthal concerning operators on C[0, 1]. Adv. Math. 218, 1512–1525 (2008)
I. Gasparis, A new isomorphic ℓ 1 predual not isomorphic to a complemented subspace of a C(K) space. Bull. Lond. Math. Soc. 45, 789–799 (2013)
I. Gasparis, A note on operators fixing cotype subspaces of C[0, 1]. Proc. Am. Math. Soc. 142, 1633–1639 (2014)
R.G. Haydon, A nonreflexive Grothendieck space that does not contain ℓ ∞ . Isr. J. Math. 40, 65–73 (1981)
S. Heinrich, C.W. Henson, Banach space model theory. II. Isomorphic equivalence. Math. Nachr. 125, 301–317 (1986)
C.W. Henson, Nonstandard hulls of Banach spaces. Isr. J. Math. 25, 108–144 (1976)
C.W. Henson, L.C. Moore, Nonstandard analysis and the theory Banach spaces, in Nonstandard Analysis–Recent Developments. Lecture Notes in Mathematics, vol. 983 (Springer, Berlin, 1983), pp. 27–112
H. Jarchow, The three space problem and ideals of operators. Math. Nachr. 119, 121–128 (1984)
T. Jech, Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics (Springer, Berlin, 2003)
W.B. Johnson, M. Zippin, Separable L 1 preduals are quotients of C(Δ). Isr. J. Math. 16, 198–202 (1973)
W.B. Johnson, H.P. Rosenthal, M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces. Isr. J. Math. 9, 488–506 (1971)
M.I. Kadec, On complementably universal Banach spaces. Stud. Math. 40, 85–89 (1971)
P. Koszmider, Banach spaces of continuous functions with few operators. Math. Ann. 330, 151–184 (2004)
P. Koszmider, The interplay between compact spaces and the Banach spaces of their continuous functions. Section 52 in Open Problems in Topology II (Elsevier, Amsterdam, 2007)
D.H. Leung, F. Räbiger, Complemented copies of c 0 in l ∞-sums of Banach spaces. Ill. J. Math. 34 (1990) 52–58.
J. Lindenstrauss, On the extension of operators with range in a C(K) space. Proc. Am. Math. Soc. 15, 218–225 (1964)
J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I (Springer, Berlin, 1977)
W. Marciszewski, On Banach spaces C(K) isomorphic to c 0(Γ). Stud. Math. 156, 295–302 (2003)
W. Marciszewski, R. Pol, On Banach spaces whose norm-open sets are F σ sets in the weak topology. J. Math. Anal. Appl. 350, 708–722 (2009)
Y. Moreno, A. Plichko, On automorphic Banach spaces. Isr. J. Math. 169, 29–45 (2009)
V.M. Onieva, Notes on Banach space ideals. Math. Nachr. 126, 27–33 (1986)
J.R. Partington, Subspaces of certain Banach sequence spaces. Bull. Lond. Math. Soc. 13, 162–166 (1981)
A. Pełczyński, Universal bases. Stud. Math. 32, 247–268 (1969)
T.S.S.R.K. Rao, Isometries of A C (K). Proc. Am. Math. Soc. 85, 544–546 (1982)
H.P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory. Stud. Math. 37, 13–36 (1970)
W. Schachermayer, On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. 214, 33 pp. (1982)
T. Schlumprecht, Limited sets in Banach spaces, Dissertation, Munich, 1987
M. Talagrand, Un nouveau C(K) qui possède la propriété de Grothendieck. Isr. J. Math. 37, 181–191 (1980)
M. Tarbard, Hereditarily indecomposable, separable \(\mathcal{L}_{\infty }\) Banach spaces with ℓ 1 dual having few but not very few operators. J. Lond. Math. Soc. 85, 737–764 (2012)
S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 16, 140–150 (1930)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Avilés, A., Sánchez, F.C., Castillo, J.M.F., González, M., Moreno, Y. (2016). Open Problems. In: Separably Injective Banach Spaces. Lecture Notes in Mathematics, vol 2132. Springer, Cham. https://doi.org/10.1007/978-3-319-14741-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-14741-3_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14740-6
Online ISBN: 978-3-319-14741-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)