Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation

Volume 9060 of the series Lecture Notes in Computer Science pp 125-140

Stability, Supportedness, Minimality and Kleene Answer Set Programs

  • Patrick DohertyAffiliated withDept. of Computer and Information Science, Linköping University
  • , Andrzej SzałasAffiliated withDept. of Computer and Information Science, Linköping UniversityInstitute of Informatics, University of Warsaw

* Final gross prices may vary according to local VAT.

Get Access


Answer Set Programming is a widely known knowledge representation framework based on the logic programming paradigm that has been extensively studied in the past decades. The semantic framework for Answer Set Programs is based on the use of stable model semantics. There are two characteristics intrinsically associated with the construction of stable models for answer set programs. Any member of an answer set is supported through facts and chains of rules and those members are in the answer set only if generated minimally in such a manner. These two characteristics, supportedness and minimality, provide the essence of stable models. Additionally, answer sets are implicitly partial and that partiality provides epistemic overtones to the interpretation of disjunctive rules and default negation. This paper is intended to shed light on these characteristics by defining a semantic framework for answer set programming based on an extended first-order Kleene logic with weak and strong negation. Additionally, a definition of strongly supported models is introduced, separate from the minimality assumption explicit in stable models. This is used to both clarify and generate alternative semantic interpretations for answer set programs with disjunctive rules in addition to answer set programs with constraint rules. An algorithm is provided for computing supported models and comparative complexity results between strongly supported and stable model generation are provided.