Decidability of Circumscribed Description Logics Revisited

  • Piero Bonatti
  • Marco Faella
  • Carsten Lutz
  • Luigi Sauro
  • Frank Wolter
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)

Abstract

We revisit non-monotonic description logics based on circumscription (with preferences) and prove several decidability results for their satisfiability problem. In particular, we consider circumscribed description logics without the finite model property (DL-Lite\(_{\mathcal{F}}\) and \(\mathcal{ALCFI}\)) and with fixed roles (DL-Lite\(_{\mathcal{F}}\) and a fragment of DL-Lite\(_{\mathcal{R}}\)), improving upon previous decidability results that are limited to logics which have the finite model property and do not allow to fix roles during minimization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family and relations. J. Artif. Intell. Res (JAIR) 36, 1–69 (2009)MathSciNetMATHGoogle Scholar
  2. 2.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, implementation and applications. Cambridge University Press (2003)Google Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  5. 5.
    Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J. Artif. Intell. Res (JAIR) 42, 719–764 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell. Res (JAIR) 35, 717–773 (2009)MATHGoogle Scholar
  7. 7.
    Brewka, G.: The logic of inheritance in frame systems. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence (IJCAI 1987), pp. 483–488. Morgan Kaufmann (1987)Google Scholar
  8. 8.
    Cadoli, M., Donini, F., Schaerf, M.: Closed world reasoning in hybrid systems. In: Proc. of ISMIS 1990, pp. 474–481. Elsevier (1990)Google Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. of AAAI 2005, pp. 602–607 (2005)Google Scholar
  10. 10.
    Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif. Intell. Res (JAIR) 48, 415–473 (2013)MathSciNetMATHGoogle Scholar
  11. 11.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artificial Intelligence 172(12), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Feferman, S., Vaught, R.L.: The first-order properties of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)MathSciNetMATHGoogle Scholar
  14. 14.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Equality-friendly well-founded semantics and applications to description logics. In: Description Logics (2012)Google Scholar
  17. 17.
    Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Stable model semantics for guarded existential rules and description logics. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24 (2014)Google Scholar
  18. 18.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and module extraction, with an application to dl-lite. Artif. Intell. 174(15), 1093–1141 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Motik, B., Rosati, R.: Reconciling description logics and rules. Journal of the ACM (JACM) 57(5), 30 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rector, A.L.: Defaults, context, and knowledge: Alternatives for OWL-indexed knowledge bases. In: Pacific Symposium on Biocomputing, pp. 226–237. World Scientific (2004)Google Scholar
  22. 22.
    Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: Grounded circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 617–632. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattler, U., Drummond, N., Horridge, M., Rector, A.L.: Using OWL to model biological knowledge. International Journal of Man-Machine Studies 65(7), 583–594 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Piero Bonatti
    • 1
  • Marco Faella
    • 1
  • Carsten Lutz
    • 2
  • Luigi Sauro
    • 1
  • Frank Wolter
    • 3
  1. 1.Dept. of Electrical Engineering and Information TechnologiesUniversity of NaplesItaly
  2. 2.Dept. of Computer ScienceUniversity of BremenGermany
  3. 3.Dept. of Computer ScienceUniversity of LiverpoolUK

Personalised recommendations