Infinite Argumentation Frameworks

On the Existence and Uniqueness of Extensions
  • Ringo Baumann
  • Christof Spanring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)

Abstract

Abstract properties satisfied for finite structures do not necessarily carry over to infinite structures. Two of the most basic properties are existence and uniqueness of something. In this work we study these properties for acceptable sets of arguments, so-called extensions, in the field of abstract argumentation. We review already known results, present new proofs or explain sketchy old ones in more detail. We also contribute new results and introduce as well as study the question of existence-(in)dependence between argumentation semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, V., Grädel, E., Rubin, S.: Automata-based presentations of infinite structures. In: Finite and Algorithmic Model Theory, pp. 1–76. Cambridge University Press (2011)Google Scholar
  2. 2.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowledge Engineering Review 26(4), 365–410 (2011)CrossRefGoogle Scholar
  3. 3.
    Baroni, P., Cerutti, F., Dunne, P.E., Giacomin, M.: Automata for infinite argumentation structures. Artificial Intelligence 203, 104–150 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer (2009)Google Scholar
  5. 5.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: A general schema for argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baumann, R.: Context-free and context-sensitive kernels: Update and deletion equivalence in abstract argumentation. In: ECAI, pp. 63–68 (2014)Google Scholar
  7. 7.
    Baumann, R.: Metalogical Contributions to the Nonmonotonic Theory of Abstract Argumentation. College Publications (2014)Google Scholar
  8. 8.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: COMMA. FAIA, vol. 216, pp. 75–86. IOS Press (2010)Google Scholar
  9. 9.
    Trevor, J.M.: Bench-Capon and Paul E. Dunne. Argumentation in AI and law: Editors’ introduction. Artificial Intelligence and Law 13(1), 1–8 (2005)CrossRefGoogle Scholar
  10. 10.
    Trevor, J.M.: Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619–641 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems 37(6), 641–674 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Caminada, M.W.A.: Comparing two unique extension semantics for formal argumentation: Ideal and eager. In: BNAIC, pp. 81–87 (2007)Google Scholar
  13. 13.
    Martin, W.A.: Caminada and Bart Verheij. On the existence of semi-stable extensions. In: BNAIC (2010)Google Scholar
  14. 14.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dvořák, W., Gaggl, S.A.: Stage semantics and the SCC-recursive schema for argumentation semantics. Journal of Logic and Computation (2014)Google Scholar
  16. 16.
    Grossi, D.: On the logic of argumentation theory. In: AAMAS, pp. 409–416. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  17. 17.
    Halmos, P.R.: Naive Set Theory. In: Undergraduate Texts in Mathematics. Springer (1960)Google Scholar
  18. 18.
    Verheij, B.: Deflog: on the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation 13(3), 319–346 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Weydert, E.: Semi-stable extensions for infinite frameworks. In: BNAIC, pp. 336–343 (2011)Google Scholar
  20. 20.
    Zorn, M.: A remark on method in transfinite algebra. Bulletin of the American Mathematical Society 41, 667–670 (1935)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ringo Baumann
    • 1
  • Christof Spanring
    • 2
    • 3
  1. 1.Computer Science InstituteLeipzig UniversityGermany
  2. 2.Department of Computer ScienceUniversity of LiverpoolUK
  3. 3.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations